Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi bạn ơi! "Tam giác ABC" không phải "tam giác ABCD"
a: Xét tứ giác AEDF có
\(\widehat{AED}=\widehat{AFD}=\widehat{FAE}=90^0\)
Do đó: AEDF là hình chữ nhật
b: Xét ΔADM có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔADM cân tại A
=>AD=AM
ΔADM cân tại A
mà AE là đường cao
nên AE là phân giác của \(\widehat{DAM}\left(1\right)\)
Xét ΔADN có
AF là đường cao
AF là đường trung tuyến
Do đó: ΔADN cân tại A
=>AD=AN
ΔADN cân tại A
mà AF là đường cao
nên AF là phân giác của \(\widehat{DAN}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{MAN}=\widehat{MAD}+\widehat{NAD}\)
\(=2\left(\widehat{EAD}+\widehat{FAD}\right)\)
\(=2\cdot\widehat{FAE}=2\cdot90^0=180^0\)
=>M,A,N thẳng hàng(3)
AM=AD
AN=AD
Do đó: AM=AN(4)
Từ (3) và (4) suy ra A là trung điểm của MN
c: Xét ΔADB và ΔAMB có
AD=AM
\(\widehat{DAB}=\widehat{MAB}\)
AB chung
Do đó: ΔADB=ΔAMB
=>\(\widehat{AMB}=\widehat{ADB}=90^0\)
=>BM\(\perp\)MN(5)
Xét ΔADC và ΔANC có
AD=AN
\(\widehat{DAC}=\widehat{NAC}\)
AC chung
Do đó: ΔADC=ΔANC
=>\(\widehat{ANC}=\widehat{ADC}=90^0\)
=>CN\(\perp\)NM(6)
Từ (5) và (6) suy ra BM//CN
Xét tứ giác BMNC có
BM//CN
BM\(\perp\)MN
Do đó: BMNC là hình thang vuông
Xét ΔADE và ΔABC có
\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{3}\right)\)
\(\widehat{DAE}=\widehat{BAC}\)(hai góc đối đỉnh)
Do đó: ΔADE\(\sim\)ΔABC(c-g-c)
Suy ra: \(k=\dfrac{AD}{AB}=\dfrac{1}{3}\)
giải
a) Tứ giác BHKC có : 2 đường chéo BK và CH cắt nhau tại A tại trung điểm mỗi đường
=> BHKC là hình bình hành
b) Tứ giác AHIK là hình bình hành nên AK//IH và AK =IH
=> AB // IH và AB =IH
Tứ giác ABIH là hình bình hành vậy IA // HB
=> AM là đường trung bình của tam giác BHC
=> MB = MC
c) chịu ko biết làm
a) Tứ giác BHKC có : 2 đường chéo BK và CH cắt nhau tại A tại trung điểm mỗi đường
=> BHKC là hình bình hành
b) Tứ giác AHIK là hình bình hành nên AK//IH và AK =IH
=> AB // IH và AB =IH
Tứ giác ABIH là hình bình hành vậy IA // HB
=> AM là đường trung bình của tam giác BHC
=> MB = MC
c) chịu
a) Sửa đề: ΔABC\(\sim\)ΔANM
Xét ΔABC vuông tại A và ΔANM vuông tại A có
\(\dfrac{AB}{AN}=\dfrac{AC}{AM}\left(\dfrac{24}{13.5}=\dfrac{32}{18}\right)\)
Do đó: ΔABC\(\sim\)ΔANM(c-g-c)
b) Ta có: ΔABC\(\sim\)ΔANM(cmt)
nên \(\widehat{ABC}=\widehat{ANM}\)(hai góc tương ứng)
mà \(\widehat{ABC}\) và \(\widehat{ANM}\) là hai góc ở vị trí so le trong
nên MN//BC(Dấu hiệu nhận biết hai đường thẳng song song)