K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2021

\(AB^2-AC^2=AD^2+DB^2-AC^2-DC^2=DB^2-DC^2\)

\(EB^2-EC^2=ED^2+DB^2-ED^2-DC^2=DB^2-DC^2\)

Do đó: \(AB^2-AC^2=EB^2-EC^2\)

14 tháng 3 2017

bằng1

14 tháng 3 2017

A B C E D M I HÌNH NÈ

7 tháng 2 2018

Ta có : \(BE^2-EC^2=\left(BD^2-DE^2\right)-\left(DC^2-DE^2\right)\)

\(=BD^2-DC^2=BD^2-AD^2=AB^2\)

Vậy nên \(BE^2-EC^2=AB^2\)

18 tháng 5 2017

Tự vẽ hình

a/ Xét tg ABD và tg AED có:

AD: chung

BAD^ = EAD^ (gt)

AB = AE (gt)

=> tg ABD = tg AED (cgc)

=> BD = ED

b/ Có: AB = AE (gt)

=> A thuộc trung trực của BE (1)

Có: BD = ED (ý a)

=> D thuộc trung trực của BE (2)

Từ (1) và (2) => AD là trunq trực của BE

c/ AB = AE (gt) => AB2 = AE2 (3)

BD = ED (ý a) => BD2 = ED2 (4)

Từ (3), (4) => AB2 + DE2 = AE2 + BD2

8 tháng 4 2018

help me

9 tháng 4 2018

a) Xét tam giác vuông ADB và tam giác vuông ACE có:

Góc A chung

AB = AC (gt)

\(\Rightarrow\Delta ABD=\Delta ACE\)   (Cạnh huyền - góc nhọn)

b) Do \(\Delta ABD=\Delta ACE\Rightarrow AD=AE\)

Xét tam giác vuông AEH và tam giác vuông ADH có:

Cạnh AH chung

AE = AD (cmt)

\(\Rightarrow\Delta AEH=\Delta ADH\)   (Cạnh huyền - cạnh góc vuông)

\(\Rightarrow HE=HD\)

c) Xét tam giác ABC có BD, CE là đường cao nên chúng đồng quy tại trực tâm. Vậy H là trực tâm giác giác.

Lại có AM cũng là đường cao nên AM đi qua H.

d) Xét các tam giác vuông EBC và EAC, áp dụng định lý Pi-ta-go ta có:

\(BC^2=EB^2+EA^2;AC^2=EA^2+EC^2\)   

Tam giác ABC cân tại A nên AB = AC hay \(AB^2=AC^2\)

Vậy nên \(AB^2+AC^2+BC^2=2AC^2+BC^2=2\left(EA^2+EC^2\right)+EB^2+EC^2\)

\(=3EC^2+2EA^2+BC^2\).

15 tháng 3 2017

Tự vẽ hình nha bạn!

Cm:

a)Xét \(\Delta ABD\) và \(\Delta ACE\)có:

\(\widehat{ADB}=\widehat{AEC}=90\)độ

\(\widehat{A}\)chung 

AB=AC (gt)

\(\Rightarrow\Delta ABD=\Delta ACE\)(cạnh huyền-góc nhọn)

=> AD=AE (2 cạnh tương ứng)

            (ĐPCM)

b) Vì AD=AE(cmt) =>\(\Delta ADE\)cân tại A

=> \(\widehat{AED}=\widehat{ADE}\)

\(\Delta ADE\)có: \(\widehat{A}+\widehat{AED}+\widehat{ADE}=180\)độ

\(\Rightarrow\widehat{AED}=\frac{180^0-\widehat{A}}{2}\)(1)

\(\Delta ABC\)cân tại A => \(\widehat{ABC}=\widehat{ACB}\)

\(\Delta ABC\)có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)

\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(2)

Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)

Mà 2 góc này ở vị trí đồng vị

=>DE//BC (đpcm)

c) Xét \(\Delta AIE\)và \(\Delta AID\)có:

\(\widehat{AEI}=\widehat{ADI}=90^0\)

AI chung

AE=AD (cmt)

=> \(\Delta AIE\)=\(\Delta AID\)(cạnh huyền-cạnh góc vuông)

=> \(\widehat{EAI}=\widehat{DAI}\)(2 góc tương ứng)

=> AI là tia phân giác của góc BAC (3)

Xét \(\Delta ABM\)và \(\Delta ACM\)có:

AM chung

BM=CM (gt)

AB=AC (gt)

=>\(\Delta ABM\)=\(\Delta ACM\)(c.c.c)

=>\(\widehat{BAM}=\widehat{CAM}\)(2 góc tương ứng)

=>AM là tia phân giác của góc BAC (4)

Từ (3) và (4) => A,I,M thẳng hàng (đpcm)

Câu d tớ chịu!