K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Sửa đề: Tia AD là tia phân giác của góc HAC

Xét ΔBAD có BA=BD(gt)

nên ΔBAD cân tại B(Định nghĩa tam giác cân)

Ta có: \(\widehat{BAD}+\widehat{CAD}=90^0\)

\(\widehat{HAD}+\widehat{BDA}=90^0\)

mà \(\widehat{BAD}=\widehat{BDA}\)(ΔBAD cân tại B)

nên \(\widehat{CAD}=\widehat{HAD}\)

hay AD là tia phân giác của \(\widehat{HAC}\)(đpcm)

b) Xét ΔAKD vuông tại K và ΔAHD vuông tại H có 

AD chung

\(\widehat{KAD}=\widehat{HAD}\)(AD là tia phân giác của \(\widehat{KAH}\))

Do đó: ΔAKD=ΔAHD(cạnh huyền-góc nhọn)

Suy ra: AK=AH(hai cạnh tương ứng)

a: BC=15cm

b: Xét ΔABM có

BH là đường cao

BH là đường trung tuyến

Do đó: ΔABM cân tại B

c: Xét tứ giác ABNC có

K là trung điểm của BC

K là trung điểm của AN

Do đó: ABNC là hình bình hành

Suy ra: CN=AB

mà AB=BM

nên CN=BM

16 tháng 3 2022

cảm ơn bạn nhiều nhé ^^

2: góc ABH+góc HBC=góc ABC

góc ACK+góc KCB=góc ACB

mà góc ABC=góc ACB; góc HBC=góc KCB

nên góc ABH=góc ACK

6 tháng 5 2018

â)Ta có :  AB = AC =10 cm (gt)

=> tam giác ABC cân tại A (2 cạnh bên = nhau )

b) Xét tam giác AHB va tam giac AHC ,co : 

\(\widehat{AHB}=\widehat{AHC}=90^O\) ( AH là đường cao ) 

AB =AC =10 cm (gt )

AH là cạnh chung 

Do đo : tam giác AHB =tam giác AHC ( cạnh huyền - cạnh góc vuông ) 

=>\(\widehat{BAH}=\widehat{CAH}\)( hai góc tương ứng ) 

=>AH là tia phân giác của góc A 

c)Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác 

Nên :H là trung điểm của BC

=>BH = CH  = \(\frac{BC}{2}\)=12/2 = 6 cm

6 tháng 5 2018

TRẢ LỜI TIẾP CÂU Ở TRÊN NHA  ( HỒI NÃY BẤM NHẦM GỬI TRẢ LỜI ) 

b) Vì trong tam giác cân đường phân giác đồng thời là đường trung tuyến của tam giác  

Nên : H là trung điểm của BC

=> BH =CH =\(\frac{BC}{2}=\frac{12}{2}=6cm\)

Xét : tam giác BMH và tam giác HCN , co :

 BH = CH = 6cm ( chứng minh trên ) 

\(\widehat{M}=\widehat{N}=90^o\left(gt\right)\)

\(\widehat{B}=\widehat{C}\) (Vì tam giác ABC cân tại A nên hai góc ở đáy = nhau ) 

Do do:tm giác BHM = tam giác HCN

đ) Áp dụng định lý pytago vào tam giác  AHC vuông tại H 

\(AH^2=AC^2-HC^2\) =\(10^2-6^2\)=\(100-36=64\)

=>\(AH=\sqrt{64}=8cm\)  OK CHÚC BẠN HỌC TỐT 

15 tháng 3 2020

Bạn ơi có gải ko đăng lên đi

12 tháng 4 2020

1.a)
Vì AB=AC => Tam giác ABC cân
b)
Vì △ABC cân
=> góc ABC=góc ACB (1)
góc AHC=góc AHB=90 độ (2)
AB=AC (gt) (3)
Từ (1)(2)(3) => △AHB = △AHC (cạnh huyền-góc nhọn)
=> góc BAH = góc CAH
=> AH là tia phân giác của góc A
c) Vì góc ABC = góc ACB
=> góc MBH = góc NCH
góc BMH = góc HNC =90 độ
=> △BHM = △HCN (g.g)
d) Ta có: AH.BC=AB.AC
=> AH.12=10.10
=> AH = 25/3 (cm)

23 tháng 7 2021
Bn tự vẽ hình nha!!! a,Ta có: BA=BD(gt)=>Tam giác BAD cân tại B=>^BAD=^BDA(tính chất tam giác cân). Mà ^BAD+^DAC=90°;^BDA+^HAD=90°(phụ nhau)=>^DAC=^HAD hay AD là tia phân giác của ^HAC(đpcm).
23 tháng 7 2021
b, Xét tam giác vuông ADH và tam giác vuông ADK có: AD cạnh chung;^HAD=^DAK(cmt)=>Tam giác ADH = Tam giác ADK(ch-gn)=>AH=AK(2 cạnh tương ứng)(đpcm).

a: Ta có: ΔAHB vuông tại H

=>\(AH^2+HB^2=AB^2\)

=>\(AH^2=10^2-6^2=64\)

=>\(AH=\sqrt{64}=8\left(cm\right)\)

b: Xét ΔAHB vuông tại H và ΔAHC vuông tại H có

AB=AC

AH chung

Do đó: ΔAHB=ΔAHC

=>\(\widehat{BAH}=\widehat{CAH}\)

=>AH là phân giác của góc BAC

c: Ta có: ΔAHB=ΔAHC

=>BH=CH

Xét ΔBMH vuông tại M và ΔCNH vuông tại N có

BH=CH

\(\widehat{B}=\widehat{C}\)

Do đó: ΔBMH=ΔCNH

d: Xét ΔABO vuông tại B và ΔACO vuông tại C có

AO chung

AB=AC

Do đó: ΔABO=ΔACO

=>OB=OC

=>ΔOBC cân tại O