Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để chứng minh C,O,E thẳng hàng ta cần chứng minh AK,BG,CE đồng quy
Gọi giao điểm của BG và AC là F; giao điểm của CE và AB là I
Xét tam giác ABC vuông tại A :
\(AB^2=BK.BC;AC^2=CK.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BK}{CK}\)
Mặt khác: EB//AC =>\(\frac{IA}{IB}=\frac{AC}{EB}\); CG//AB=> \(\frac{FC}{FA}=\frac{AB}{CG}\)
Suy ra: \(\frac{IA}{IB}.\frac{BK}{CK}.\frac{FC}{FA}=\frac{AC}{EB}.\frac{AB^2}{AC^2}.\frac{CG}{AB}=\frac{AB.CG}{EB.AC}=1\)
Theo định lí CEVA CI,BF,AK đồng quy
Hay AK,BG,CE đồng quy (đpcm)
\(\widehat{ABK}=90^o\)(Góc nội tiếp chắn nửa đường tròn) \(\Rightarrow BK\perp AB\) mặt khác \(CH\perp AB\)(Do H là trực tâm) \(\Rightarrow BK//CH\)
C/m tương tự cũng có \(CK//BH\)
=> Tứ giác BHCK là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)
Câu 2:
Gọi giao của BC với KH là M' => M là trung điểm của BC (M' là giao của hai đường chéo hbh BHCK)
Mặt khác M cũng là trung điểm của BC (Trong 1 đường tròn bán kính vuông gó với dây cung thì chia đôi dây cung)
=> \(M\equiv M'\) => H; M;K thẳng hàng
bạn giải ra bài này chưa mình đang luyện thi casio nếu bạn biết hãy chỉ giúp mình nhá