K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 6 2021

Để chứng minh C,O,E thẳng hàng ta cần chứng minh AK,BG,CE đồng quy

Gọi giao điểm của BG và AC là F; giao điểm của CE và AB là I

Xét tam giác ABC vuông tại A :

\(AB^2=BK.BC;AC^2=CK.BC\Rightarrow\frac{AB^2}{AC^2}=\frac{BK}{CK}\)

Mặt khác: EB//AC =>\(\frac{IA}{IB}=\frac{AC}{EB}\); CG//AB=> \(\frac{FC}{FA}=\frac{AB}{CG}\)

Suy ra: \(\frac{IA}{IB}.\frac{BK}{CK}.\frac{FC}{FA}=\frac{AC}{EB}.\frac{AB^2}{AC^2}.\frac{CG}{AB}=\frac{AB.CG}{EB.AC}=1\)

Theo định lí CEVA CI,BF,AK đồng quy 

Hay AK,BG,CE đồng quy (đpcm)

2 tháng 6 2021

BG cắt AK tại O 

Nhầm :)))

18 tháng 9 2018

\(\widehat{ABK}=90^o\)(Góc nội tiếp chắn nửa đường tròn) \(\Rightarrow BK\perp AB\) mặt khác \(CH\perp AB\)(Do H là trực tâm) \(\Rightarrow BK//CH\)

C/m tương tự cũng có \(CK//BH\)

=> Tứ giác BHCK là hình bình hành (Tứ giác có các cặp cạnh đối // với nhau từng đôi một)

Câu 2:

Gọi giao của BC với KH là M' => M là trung điểm của BC (M' là giao của hai đường chéo hbh BHCK)

Mặt khác M cũng là trung điểm của BC (Trong 1 đường tròn bán kính vuông gó với dây cung thì chia đôi dây cung)

=> \(M\equiv M'\) => H; M;K thẳng hàng

2 tháng 12 2018

bạn giải ra bài này chưa mình đang luyện thi casio nếu bạn biết hãy chỉ giúp mình nhá