Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình tự vẽ
a) \(\Delta\)ABH vuông tại H có đường cao HD
=> AD.AB = AH2 (Hệ thức lượng trong tam giác vuông) (1)
\(\Delta\)AHC vuông tại H có đường cao HE
=> AE.AC = AH2 (Hệ thức lượng rong tam giác vuông) (2)
Từ (1) và (2) => AD.AB = AE.AC (=AH2)
b) \(\Delta\)AHB vuông tại H có đường cao HD
=> \(\dfrac{1}{HD^2}=\dfrac{1}{AH^2}+\dfrac{1}{BH^2}\) (Hệ thức lượng trong tam giác vuông) (3)
\(\Delta\)AHC vuông tại H có đường cao HE
=> \(\dfrac{1}{HE^2}=\dfrac{1}{AH^2}+\dfrac{1}{HC^2}\) (Hệ thức lượng trong tam giác vuông) (4)
Từ (3) và (4) => \(\dfrac{1}{HD^2}+\dfrac{1}{HE^2}=\dfrac{1}{AH^2}+\dfrac{1}{HC^2}+\dfrac{1}{AH^2}+\dfrac{1}{HB^2}=\dfrac{2}{AH^2}+\dfrac{1}{HC^2}+\dfrac{1}{HB^2}\)
c) Kẻ đường cao CM
Xét \(\Delta\)ABH và \(\Delta\)CBM có:
\(\widehat{AHB}=\widehat{CMB}\left(=90^o\right)\)
Chung \(\widehat{ABC}\)
=> \(\Delta\)ABH ~ \(\Delta\)CBM (g.g)
=> \(\dfrac{AH}{AD}=\dfrac{BC}{CM}\)
=> AH.CM = BC.AD (*)
Vì AD.AB = AE.AC (cmt)
=> \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Xét \(\Delta\)ADE và \(\Delta\)ACB có:
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)
Chung \(\widehat{BAC}\)
=> \(\Delta\)ADE ~ \(\Delta\)ACB (c.g.c)
=> \(\dfrac{DE}{BC}=\dfrac{AD}{AC}\)
=> DE.AC = BC.AD (**)
Từ (*) và (**) => AH.CM = DE.AC
=> \(DE=AH.\dfrac{CM}{AC}\)(I)
\(\Delta\)ACM vuông tại M => \(\sin A=\dfrac{CM}{AC}\) (II)
Từ (I) và (II) => DE = AH.sin A
Khôi Bùi DƯƠNG PHAN KHÁNH DƯƠNGMysterious PersonPhạm Hoàng GiangPhùng Khánh LinhArakawa WhiteDũng NguyễnrJakiNatsumiTRẦN MINH HOÀNGtran nguyen bao quan
a: \(BD\cdot CE\cdot BC\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot\dfrac{AB\cdot AC}{AH}\)
\(=\dfrac{AH^4}{AH}=AH^3\)
b: \(\dfrac{BD}{CE}=\dfrac{HB^2}{AB}:\dfrac{HC^2}{AC}=\dfrac{HB^2}{AB}\cdot\dfrac{AC}{HC^2}=\dfrac{AB^4}{AB}\cdot\dfrac{AC}{AC^4}=\dfrac{AB^3}{AC^3}\)
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\dfrac{BH}{CH}=\dfrac{AB^2}{AC^2}\)
b: \(\dfrac{BE}{CF}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}=\dfrac{BH^2}{AB}\cdot\dfrac{AC}{CH^2}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\dfrac{AB^4}{AC^4}\cdot\dfrac{AC}{AB}=\dfrac{AB^3}{AC^3}\)
e: \(BE\cdot CF\cdot BC\)
\(=\dfrac{HB^2}{AB}\cdot\dfrac{HC^2}{AC}\cdot BC\)
\(=\dfrac{AH^4}{AB\cdot AC}\cdot BC=\dfrac{AH^4}{AH\cdot BC}\cdot BC=AH^3\)
\(=EF^3\)
bạn tự vẽ hình nha
áp dụng hệ thức lượng trong tam giác vuông ABCco \(AB^2=BA'^2\cdot BC,AC^2=A'C^2\cdot BC\)
\(\Rightarrow\frac{AB^2}{AC^2}=\frac{BA'}{A'C}\Rightarrow\frac{AC^4}{AB^4}=\frac{A'C^2}{A'B^2}\) (1)
mà trong tam giác vuông AA'B có\(BA'^2=BF\cdot AB\)
trong tam giác vuông AA'C có \(A'C^2=EC\cdot AC\)
thay vào (1) ta co \(\frac{AC^4}{AB^4}=\frac{EC\cdot AC}{BF\cdot AB}\Rightarrow\frac{AC^3}{AB^3}=\frac{EC}{BF}\left(DPCM\right)\)
b,de dang chung minh duoc tam giac BMD~BAC
SUY RA \(\frac{BD}{BC}=\frac{BM}{BA}=\frac{MD}{AC}\) (2)
tuong tu tam giac NDC~ABC
SUY RA \(\frac{DC}{BC}=\frac{NC}{AC}=\frac{ND}{AB}\)(3)
nhan (2) voi (3) ta co \(\frac{BD\cdot DC}{BC^2}=\frac{BM\cdot ND}{AB^2}=\frac{MD\cdot NC}{AC^2}=\frac{BM\cdot ND+MD\cdot NC}{AB^2+AC^2}\)
suy ra \(BD\cdot DC=BM\cdot ND+MD\cdot NC\)
de dang cm duoc tu giac AMDN la hcn suy ra MA =ND,MD=AN
THAY VAO BIEU THUC TREN TA CO \(BD\cdot DC=MA\cdot MB+NA\cdot NC\left(DPCM\right)\)
a: Xét tứ giác AMHN có góc AMH=góc ANH=góc MAN=90 độ
nên AMHN là hình chữ nhật
=>góc ANM=góc AHM=góc B
Ta có: ΔBAC vuông tại A
mà AI là trung tuyến
nên IA=IC=IB
=>góc IAC=góc ICA
=>góc IAN+góc ANM=90 độ
=>AI vuông góc với MN tại K
Xét ΔAMN vuông tại A có AK là đường cao
nên \(\dfrac{1}{AK^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)
b: \(\dfrac{BM}{CN}=\dfrac{BH^2}{AB}:\dfrac{CH^2}{AC}\)
\(=\dfrac{BH^2}{CH^2}\cdot\dfrac{AC}{AB}=\left(\dfrac{AB}{AC}\right)^3\)
=>ĐPCM
d \(AB\cdot AC\cdot sinB\cdot cosB\)
\(=AB\cdot AC\cdot\dfrac{AC}{BC}\cdot\dfrac{AB}{BC}=AB^2\cdot\dfrac{AC^2}{BC^2}\)
\(=\dfrac{\left(AH\cdot BC\right)^2}{BC^2}=AH^2\)
a, Gọi giao điểm của AB và EH là O
Xét tg AEO có \(\sin\widehat{A}=\dfrac{OE}{OA}\)
Vì \(\left\{{}\begin{matrix}\widehat{OEA}=\widehat{HDO}=90^0\\\widehat{AOE}.chung\end{matrix}\right.\) nên \(\Delta ODH\sim\Delta OEA\left(g.g\right)\)
\(\Rightarrow\dfrac{OD}{OE}=\dfrac{OH}{OA}\)
Vì \(\left\{{}\begin{matrix}\dfrac{OD}{OE}=\dfrac{OH}{OA}\\\widehat{AOE}.chung\end{matrix}\right.\) nên \(\Delta OHA\sim\Delta ODE\left(c.g.c\right)\)
\(\Rightarrow\dfrac{DE}{AH}=\dfrac{OE}{OA}=\sin\widehat{A}\\ \Rightarrow DE=AH\cdot\sin\widehat{A}\)
b, Áp dụng công thức diện tích tam giác bằng \(\dfrac{1}{2}\) tích hai cạnh kề với sin của góc hợp bởi hai cạnh đó trong tam giác.
\(S_{ABC}=S_{AIB}+S_{AIC}\\ \Rightarrow\dfrac{1}{2}\cdot AB\cdot AC\cdot\sin\widehat{BAC}=\dfrac{1}{2}\cdot AB\cdot AI\cdot\sin\widehat{BAI}+\dfrac{1}{2}AC\cdot AI\cdot\sin\widehat{CAI}\)
Mà AI là p/g nên \(\widehat{BAI}=\widehat{CAI}=\dfrac{1}{2}\widehat{BAC}=30^0\)
\(\Rightarrow\dfrac{1}{2}AB\cdot AC\cdot\sin60^0=\dfrac{1}{2}AB\cdot AI\cdot\sin30^0+\dfrac{1}{2}AC\cdot AI\cdot\sin30^0\\ \Rightarrow\dfrac{\sqrt{3}}{4}\cdot AB\cdot AC=\dfrac{1}{4}AB\cdot AI+\dfrac{1}{4}AC\cdot AI\\ \Rightarrow\dfrac{\sqrt{3}}{4}\cdot AB\cdot AC=\dfrac{1}{4}AI\left(AB+AC\right)\\ \Rightarrow\dfrac{\dfrac{\sqrt{3}}{4}}{\dfrac{1}{4}AI}=\dfrac{AB+AC}{AB\cdot AC}\\ \Rightarrow\dfrac{\sqrt{3}}{AI}=\dfrac{1}{AB}+\dfrac{1}{AC}\left(đpcm\right)\)
sao anh đc Admin tick mà ko đc GP nhỉ