K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔABE vuông tại E và ΔACF vuông tại F có 

góc BAE chung

Do đó;ΔABE đồng dạng  với ΔACF

Suy ra: AB/AC=AE/AF

hay \(AF\cdot AB=AE\cdot AC\)

b: Xét ΔFHB vuông tại F và ΔFAC vuông tại F có 

\(\widehat{FBH}=\widehat{FCA}\)

Do đó;ΔFHB\(\sim\)ΔFCA
Suy ra: FH/FC=FB/FA

hay \(FH\cdot FA=FB\cdot FC\)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó;ΔABE\(\sim\)ΔACF

SUy ra: AB/AC=AE/AF

hay \(AB\cdot AF=AC\cdot AE\)

b: Xét ΔFHB vuông tại F và ΔFAC vuông tại F có 

\(\widehat{FBH}=\widehat{FCA}\)

DO đó;ΔFHB\(\sim\)FAC

Suy ra: FH/FA=FB/FC
hay \(FH\cdot FC=FA\cdot FB\)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

góc BAE chung

Do đó: ΔABE đồng dạng với ΔACF

SUy ra: AB/AC=AE/AF

hay \(AB\cdot AF=AE\cdot AC\)

b: Xét ΔFHB vuông tại F và ΔFAC vuông tại F có 

\(\widehat{FBH}=\widehat{FCA}\)

Do đó:ΔFHB\(\sim\)ΔFAC

Suy ra: FH/FA=FB/FC

hay \(FH\cdot FC=FA\cdot FB\)

2 tháng 5 2023

Bạn làm đc bài này chx? Cho mik xin cách giải đc k ạ?

 

17 tháng 4

EBC+ECB=90°

AFE+EFH=90°

ECB=AFE 

EFH=CED 

=>DFC=HBC

MÀ C LÀ GÓC CHUNG

=>TAM GIÁC FDC~BHC

=>CH/CD=CB/CF

=>CH/CB=CD/CF

MÀ C LÀ GÓC CHUNG

=> TAM GIÁC HDC~BFC

=>HDC=90°

=>HD vuông với BC tại D

Mà  AD vuông với BC tại D

=>A,H,D thẳng hàng 

2 tháng 5 2023

<Tự vẽ hình nha>

a)Xét ΔABE và ΔACF

góc AEB=góc AFC

góc BEA=góc CFA

Vậy ΔABE ∼ ΔACF(g.g)

\(\dfrac{AB}{AC}\)=\(\dfrac{AE}{AF}\)⇔AB.AF=AE.AC

\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)

b)Xét ΔAEF và ΔABC

Góc A:chung

\(\dfrac{AB}{AF}\)=\(\dfrac{AE}{AC}\)(cmt)

Vậy ΔAEF∼ΔABC (g.g)

 

 

 

 

 

a: Xét ΔABE và ΔACF có

góc AEB=góc AFC

góc A chung

=>ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC
b: Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

=>FE/BC=AE/AB

=>FE*AB=AE*BC

a: Xét ΔABE và ΔACF có

góc AEB=góc AFC

góc BAE chung

=>ΔABE đồng dạng với ΔACF

b: ΔABE đồng dạng với ΔACF

=>AE/AF=AB/AC

=>AE/AB=AF/AC

Xét ΔAEF và ΔABC có

AE/AB=AF/AC

góc FAE chung

=>ΔAEF đồng dạng với ΔABC

=>EF/BC=AE/AB

=>AE*BC=AB*EF

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có 

\(\widehat{BAE}\) chung

Do đó: ΔABE\(\sim\)ΔACF

Suy ra: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

hay \(AF\cdot AB=AE\cdot AC\)

b: Ta có: \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)

nên \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

Xét ΔAEF và ΔABC có 

\(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)

\(\widehat{FAE}\) chung

Do đó: ΔAEF\(\sim\)ΔABC

3 tháng 9 2021

da