K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2021

Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình của ΔABC

Suy ra:MN//BC

hay BMNC là hình thang

14 tháng 11 2023

a/

��⊥�� (gt)

��⊥��⇒��⊥��

=> ME//AF

��⊥��⇒��⊥��

=> MF//AE

=> AEMF là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Ta có �^=90�

=> AEMF là HCN (hbh có 1 góc vuông là HCN)

b/

Ta có

MF

Xét tg vuông ABC có

MB=MC (gt); MF//AE => MF//AB 

=> AF=BF (trong tg đường thẳng đi qua trung điểm của 1 cạnh và // với 1 cạnh thì đi qua trung điểm cạnh còn lại)

Ta có

MF=IF (gt)

=> AMCI là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

Ta có 

��⊥��⇒��⊥��

=> AMCI là hình thoi (hbh có 2 đường chéo vuông góc là hình thoi)

c/

Ta có

AI//CM (cạnh đối hình thoi) => AI//BC => ABCI là hình thang

Xét tứ giác ABMI có

AI//BC (cmt) => AI//BM

MF//AB (cmt) => MI//AB

=> ABMI là hbh (Tứ giác có các cặp cạnh đối // với nhau từng đôi một là hbh)

Để ABCI là hình thang cân => AB=CI (1)

Ta có

AB=MI (cạnh đối hình bình hành ABMI) (2)

AM=CI (cạnh đối hình thoi AMCI) (3)

Từ (1) (2) (3) => AB=AM=MI=CI

Xét tg vuông ABC có

BM=CM ⇒��=��=��=��2 (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)

=> AB=AM=BM => tg ABM là tg đều ⇒�^=60�

Để ABCI là hình thang cân thì tg vuông ABC có �^=60�

d/

Xét tứ giác ADBM có

DE=ME (gt)

AE=BE (gt)

=> ADBM là hbh (Tứ giác có 2 đường chéo cắt nhau tại trung điểm mỗi đường là hbh)

=> AD//BM (cạnh đối hbh) => AD//BC

Ta có

AI//CM (cạnh đối hình thoi AMCI)

=> A;D;I thẳng hàng (từ 1 điểm ngoài đường thẳng chỉ dựng được duy nhất 1 đường thẳng // với đường thẳng đã cho)

Ta có

AD=BM (cạnh đối hbh ADBM)

AI=CM (cạnh đối hình thoi AMCI)

BM=CM (gt)

=> AD=AI => A là trung điểm DI

chúc bạn học tốt

17 tháng 12 2023

a: Xét ΔABC có

M,N lần lượt là trung điểm của AB,AC

=>MN là đường trung bình của ΔABC

=>MN//BC và \(MN=\dfrac{BC}{2}\)

Ta có: MN//BC

D\(\in\)NM

Do đó; MD//CB

ta có: \(MN=\dfrac{CB}{2}\)

\(MN=\dfrac{MD}{2}\)

Do đó:CB=MD

Xét tứ giác BMDC có

BC//MD

BC=MD

Do đó: BMDC là hình bình hành

b: Xét tứ giác AMCD có

N là trung điểm chung của AC và MD

nên AMCD là hình bình hành

17 tháng 12 2023

Anh ơi anh giúp em câu hỏi em mới đăng với nha anh thanks anh nhiều lắm ạ

a) Xét ΔABC có 

M là trung điểm của AB(gt)

N là trung điểm của AC(gt)

Do đó: NM là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒MN//BC và \(MN=\dfrac{BC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét tứ giác MNCB có MN//BC(cmt)

nên MNCB là hình thang có hai đáy là MN và BC(Định nghĩa hình thang)

b) Ta có: NM=NE(gt)

mà M,N,E thẳng hàng

nên N là trung điểm của ME

hay \(MN=\dfrac{ME}{2}\)(2)

Từ (1) và (2) suy ra ME=BC

Xét tứ giác MECB có 

ME//BC(MN//BC, E∈MN)

ME=BC(cmt)

Do đó: MECB là hình bình hành(Dấu hiệu nhận biết hình bình hành)

c) Ta có: ME//BC(MN//BC, E∈MN)

nên \(\widehat{NEF}=\widehat{CBF}\)(hai góc so le trong)

Xét ΔNEF và ΔCBF có 

\(\widehat{NEF}=\widehat{CBF}\)(cmt)

\(\widehat{EFN}=\widehat{BFC}\)(hai góc đối đỉnh)

Do đó: ΔNEF∼ΔCBF(g-g)

\(\dfrac{NE}{CB}=\dfrac{NF}{CF}\)(Các cặp cạnh tương ứng tỉ lệ)

\(\dfrac{NF}{CF}=\dfrac{1}{2}\)

hay \(CF=2\cdot NF\)

Ta có: CF+NF=NC(F nằm giữa N và C)

\(\Leftrightarrow2\cdot NF+NF=NC\)

\(\Leftrightarrow NC=2\cdot NF\)

mà \(AC=2\cdot NC\)(N là trung điểm của AC)

nên \(AC=6\cdot NF\)(đpcm)

d) Hình bình hành MECB trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MBC}=90^0\\MB=BC\end{matrix}\right.\)

hay \(\left\{{}\begin{matrix}\widehat{ABC}=90^0\\AB=2\cdot BC\end{matrix}\right.\)

Vậy: Khi ΔABC có thêm điều kiện \(\left\{{}\begin{matrix}\widehat{ABC}=90^0\\AB=2\cdot BC\end{matrix}\right.\) thì hình bình hành MECB trở thành hình vuông

a: Xét tứ giác BMCD có

N là trung điểm chung của BC và MD

=>BMCD là hình bình hành

b: Ta có: BMCD là hình bình hành

=>BM//CD và BM=CD

Ta có: BM//CD

M\(\in\)AB

Do đó: AM//CD

ta có: BM=CD

AM=MB

Do đó: AM=CD

Xét tứ giác AMDC có

AM//DC

AM=DC

Do đó: AMDC là hình bình hành

Hình bình hành AMDC có \(\widehat{MAC}=90^0\)

nên AMDC là hình chữ nhật

c: Ta có: AMDC là hình chữ nhật

=>\(\widehat{DMA}=90^0\)

=>DM\(\perp\)AB tại M

Xét ΔDBA có

DM là đường cao

DM là đường trung tuyến

Do đó: ΔDBA cân tại D

loading...