K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD có BA=BD

nên ΔBAD cân tại B

mà \(\widehat{B}=60^0\)

nên ΔBAD đều

Xét ΔABC vuông tại A có \(\cos B=\dfrac{AB}{BC}\)

=>AB/BC=1/2

=>AB=1/2BC

=>AD=BD=1/2BC

=>D là trung điểm của BC

=>DA=DC
hay ΔDAC cân tại D

b: \(\widehat{BAE}+\widehat{CAE}=90^0\)

nên \(\widehat{BAE}+75^0=90^0\)

=>\(\widehat{BAE}=15^0\)

=>\(\widehat{EAD}=45^0\)

a: Xet ΔBAD có BA=BD và góc B=60 độ

nên ΔBAD đều

b: góc CAD=90-60=30 độ=góc C

=>ΔDAC cân tại D

 

13 tháng 4 2021

a) Ta có:

\(BA=BD\rightarrow\Delta BAD\)cân tại \(B\) \(\widehat{ABD}=\widehat{B}=60^o\)

b) Ta có: \(\Delta BAD\)đều

\(\rightarrow\widehat{BAD}=60^o\)

\(\rightarrow=\widehat{DAC}=\widehat{BAC}-\widehat{BAD}=30^o\)

Lại có: \(\Delta ABC\)vuông tại \(A\rightarrow\widehat{ACB}=90^o-\widehat{ABC}=30^o\)

\(\rightarrow\widehat{DAC}=\widehat{ACB}=\widehat{ACD}\)

\(\rightarrow\Delta ADC\)cân tại  \(D\)

c) Ta có: \(CA=CE\rightarrow\Delta CAE\)cân tại \(C\)

\(\rightarrow\widehat{EAC}=90^o-\frac{1}{2}\widehat{ACB}=90^o-\frac{1}{2}\widehat{ACB=75^o}\)

\(\rightarrow\widehat{DAE}=\widehat{CAE}-\widehat{CAD}=45^o\)

13 tháng 4 2021

đccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

13 tháng 2 2016

Bn Tùng Quân ơi vẽ hình ra giúp mk

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC...
Đọc tiếp

Bài 6: Cho ∠xAy, lấy điểm B trên tia Ax, điểm D trên tia Ay sao cho AB = AD. Trên tia Bx lấy điểm E, trên tia Dy lấy điểm C sao cho BE = DC. Chứng minh ΔABC = ΔADE.
Bài 7: Cho đoạn thẳng AB có M là trung điểm. Qua M kẻ đường thẳng d vuông góc với AB. Lấy C ∈ d (C khác M). Chứng minh CM là tia phân giác của ∠ACB.
Bài 8: Cho ΔABC có AB = AC, phân giác AM (M ∈ BC).
Chứng minh: a) ΔABM = ΔACM. b) M là trung điểm của BC và AM ⊥ BC.
Bài 9: Cho ΔABC, trên nửa mặt phẳng bờ AC không chứa điểm B, lấy điểm D sao cho AD // BC và AD = BC. Chứng minh: a) ΔABC = ΔCDA. b) AB // CD và ΔABD = ΔCDB.
Bài 10: Cho ΔABC có ∠A = 90 độ, trên cạnh BC lấy điểm E sao cho BA = BE. Tia phân giác ∠B cắt AC ở D.
a) Chứng minh: ΔABD = ΔEBD. b) Chứng minh: DA = DE. c) Tính số đo ∠BED.
Bài 11: Cho ΔABD, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh: a) ΔABM = ΔECM. b) AB = CE và  AC // BE.
(* Chú ý: Δ là tam giác, ∠ là góc, ⊥ là vuông góc, // là song song.)

0
19 tháng 5 2017

Ta có: \(\Delta\)ABC cân tại A

\(\widehat{A}\) = 100o

=> \(\widehat{B}\) = \(\widehat{C}\) = 20o (Vì tổng các góc trong 1 \(\Delta\) luôn bằng 180o)

* Vì: BA = BD (gt)

=> \(\Delta\)BAD cân tại B.

Ta có: \(\widehat{BAD}+\widehat{B}+B\widehat{DA}=180^O\)

\(\widehat{BAD}+40^{O^{ }}+\widehat{BD}A=180^O\)

\(B\widehat{AD}+\widehat{BDA}=180^{O^{ }}-40^O=120^O\)

\(\Delta\)ABD cân

=> \(\widehat{A}\)= \(\widehat{BDA}\) = 70o

* Vì AC = CE (gt)

=> \(\Delta\)ACE cân tại C.

Ta có: \(\widehat{EAC}+\widehat{C}+\widehat{CEA}=180^O\)

\(\widehat{EAC}+40^O+\widehat{CEA}=180^O\)

\(\widehat{EAC}+\widehat{CEA}=180^O-40^O=140^O\)

\(\Delta\)ACE cân

=> \(\widehat{EAC}=\widehat{CEA}=70^O\)

* Xét \(\Delta\)AED có: \(\widehat{AED}=\widehat{ADE}=70^O\)

Áp dụng định lý tổng các góc trong 1 \(\Delta\) bằng 180o, ta có:

\(\widehat{DAE}+\widehat{ADE}+\widehat{DEA}=180^O\)

\(\widehat{DAE}+70^O+70^O=180^O\)

\(\widehat{DAE}=180^O-70^{O^{ }}-70^O\)

\(\widehat{DAE}=40^O\)

2 tháng 1 2018

mk tg \(\widehat{B}=\widehat{C}=40\) độ tại 180-100=80 và 80:2=40 ms phải Evil Yasuda

9 tháng 2 2019

A B C E D O M N I H

Giải: Xét t/giác ABC có góc A = 900 (theo t/c t/giác vuông)

=> góc B + góc C = 900

=> 2.góc DBC + 2.góc ECB = 900

=> 2(góc DBC + góc ECB) = 900

=> góc DBC + góc ECB = 900 : 2 = 450

Xét t/giác BOC có góc OBC + góc OCB + góc BOC = 1800

=> góc BOC = 1800 - (góc OBC + góc OCB) = 1800 - 450 = 1350

b)  Xét t/giác ABD và t/giác MBD

có AB = BM (gt)

góc ABD = góc DAM (gt)

BD : chung

=> t/giác ABD = t/giác MBD (c.g.c)

=> góc A = góc DMB (hai góc tương ứng)

Mà góc A = 900 => góc DMB = 900

Xét t/giác ACE và t/giác NEC

có CN = CA (gt)

góc NCE = góc ECA (gt)

 EC : chung

=> t/giác ACE = t/giác NEC (c.g.c)

=> góc CNE = góc A (hai cạnh tương ứng)

Mà góc A = 900 => góc CNE = 900

Ta có góc CNE + góc DMB = 900 + 900 = 1800

Mà góc CNE và góc BMD ở vị trí trong cung phía

=> EN // DM 

c) Hướng dẫn Gọi giao điểm của BD và AM là H

Xét t/giác ABH và t/giác AMH 

=> t/giác ABH = t/giác AMH (c.g.c)

=> AH = MH (hai cạnh tương ứng)

=> góc AHB = góc BHM (hai góc tương ứng)

Xét t/giác AHI và t/giác MHI

=> t/giác AHI = t/giác MHI (c.g.c)

=> IA = IM (hai cạnh tương ứng) 

=> t/giác AIM là t/giác cân tại I (1) 

còn lại tự lm