Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xet ΔBAD có BA=BD và góc B=60 độ
nên ΔBAD đều
b: góc CAD=90-60=30 độ=góc C
=>ΔDAC cân tại D
a) Ta có:
\(BA=BD\rightarrow\Delta BAD\)cân tại \(B\)mà \(\widehat{ABD}=\widehat{B}=60^o\)
b) Ta có: \(\Delta BAD\)đều
\(\rightarrow\widehat{BAD}=60^o\)
\(\rightarrow=\widehat{DAC}=\widehat{BAC}-\widehat{BAD}=30^o\)
Lại có: \(\Delta ABC\)vuông tại \(A\rightarrow\widehat{ACB}=90^o-\widehat{ABC}=30^o\)
\(\rightarrow\widehat{DAC}=\widehat{ACB}=\widehat{ACD}\)
\(\rightarrow\Delta ADC\)cân tại \(D\)
c) Ta có: \(CA=CE\rightarrow\Delta CAE\)cân tại \(C\)
\(\rightarrow\widehat{EAC}=90^o-\frac{1}{2}\widehat{ACB}=90^o-\frac{1}{2}\widehat{ACB=75^o}\)
\(\rightarrow\widehat{DAE}=\widehat{CAE}-\widehat{CAD}=45^o\)
đccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
Ta có: \(\Delta\)ABC cân tại A
\(\widehat{A}\) = 100o
=> \(\widehat{B}\) = \(\widehat{C}\) = 20o (Vì tổng các góc trong 1 \(\Delta\) luôn bằng 180o)
* Vì: BA = BD (gt)
=> \(\Delta\)BAD cân tại B.
Ta có: \(\widehat{BAD}+\widehat{B}+B\widehat{DA}=180^O\)
\(\widehat{BAD}+40^{O^{ }}+\widehat{BD}A=180^O\)
\(B\widehat{AD}+\widehat{BDA}=180^{O^{ }}-40^O=120^O\)
Mà \(\Delta\)ABD cân
=> \(\widehat{A}\)= \(\widehat{BDA}\) = 70o
* Vì AC = CE (gt)
=> \(\Delta\)ACE cân tại C.
Ta có: \(\widehat{EAC}+\widehat{C}+\widehat{CEA}=180^O\)
\(\widehat{EAC}+40^O+\widehat{CEA}=180^O\)
\(\widehat{EAC}+\widehat{CEA}=180^O-40^O=140^O\)
Mà \(\Delta\)ACE cân
=> \(\widehat{EAC}=\widehat{CEA}=70^O\)
* Xét \(\Delta\)AED có: \(\widehat{AED}=\widehat{ADE}=70^O\)
Áp dụng định lý tổng các góc trong 1 \(\Delta\) bằng 180o, ta có:
\(\widehat{DAE}+\widehat{ADE}+\widehat{DEA}=180^O\)
\(\widehat{DAE}+70^O+70^O=180^O\)
\(\widehat{DAE}=180^O-70^{O^{ }}-70^O\)
\(\widehat{DAE}=40^O\)
mk tg \(\widehat{B}=\widehat{C}=40\) độ tại 180-100=80 và 80:2=40 ms phải Evil Yasuda
Giải: Xét t/giác ABC có góc A = 900 (theo t/c t/giác vuông)
=> góc B + góc C = 900
=> 2.góc DBC + 2.góc ECB = 900
=> 2(góc DBC + góc ECB) = 900
=> góc DBC + góc ECB = 900 : 2 = 450
Xét t/giác BOC có góc OBC + góc OCB + góc BOC = 1800
=> góc BOC = 1800 - (góc OBC + góc OCB) = 1800 - 450 = 1350
b) Xét t/giác ABD và t/giác MBD
có AB = BM (gt)
góc ABD = góc DAM (gt)
BD : chung
=> t/giác ABD = t/giác MBD (c.g.c)
=> góc A = góc DMB (hai góc tương ứng)
Mà góc A = 900 => góc DMB = 900
Xét t/giác ACE và t/giác NEC
có CN = CA (gt)
góc NCE = góc ECA (gt)
EC : chung
=> t/giác ACE = t/giác NEC (c.g.c)
=> góc CNE = góc A (hai cạnh tương ứng)
Mà góc A = 900 => góc CNE = 900
Ta có góc CNE + góc DMB = 900 + 900 = 1800
Mà góc CNE và góc BMD ở vị trí trong cung phía
=> EN // DM
c) Hướng dẫn Gọi giao điểm của BD và AM là H
Xét t/giác ABH và t/giác AMH
=> t/giác ABH = t/giác AMH (c.g.c)
=> AH = MH (hai cạnh tương ứng)
=> góc AHB = góc BHM (hai góc tương ứng)
Xét t/giác AHI và t/giác MHI
=> t/giác AHI = t/giác MHI (c.g.c)
=> IA = IM (hai cạnh tương ứng)
=> t/giác AIM là t/giác cân tại I (1)
còn lại tự lm
a: Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
mà \(\widehat{B}=60^0\)
nên ΔBAD đều
Xét ΔABC vuông tại A có \(\cos B=\dfrac{AB}{BC}\)
=>AB/BC=1/2
=>AB=1/2BC
=>AD=BD=1/2BC
=>D là trung điểm của BC
=>DA=DC
hay ΔDAC cân tại D
b: \(\widehat{BAE}+\widehat{CAE}=90^0\)
nên \(\widehat{BAE}+75^0=90^0\)
=>\(\widehat{BAE}=15^0\)
=>\(\widehat{EAD}=45^0\)