Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
XÉT \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
MÀ\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)
TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)
XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C
\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)
XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B
\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)
TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)
THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)
\(\Rightarrow\widehat{DAE}=115^0\)
Ta có tam giác ABC cân tại A nên góc B=góc C mà góc ABC+ABD=180 độ
góc ACB+ACE=180 độ
=> góc ABD=góc ACE
Xét tam giác ABD và tam giác ACE có
AB=AC (tam giác ABC cân tại A)
góc ABD=góc ACE (cmt)
BD=CE(gt)
=> tam giác ABD=tam giác ACE(c-g-c)
=> AD=AE(cạnh tương ứng)
Vậy tam giác ADE cân và cân tại A
b/ Ta có tam giác ADE là tam giác cân và cân tại A nên góc D=góc E
Xét tam giác AMD và tam giác AME có:
AD=AE(tam giác ADE cân tại A)
góc D=góc E(cmt)
góc AMD=góc AME=90 độ
=> tam giác AMD=tam giác AME(ch-gn)
=> góc DAM=góc EAM(góc tương ứng)
Vậy AM là tia phân giác góc DAE
d: Ta có: \(\widehat{KBC}=\widehat{MBD}\)
\(\widehat{KCB}=\widehat{NCE}\)
mà \(\widehat{MBD}=\widehat{NCE}\)
nên \(\widehat{KBC}=\widehat{KCB}\)
hay ΔKBC cân tại K
=>KB=KC
Ta có: KB+BM=KM
KC+CN=KN
mà KB=KC
và BM=CN
nên KM=KN
=>ΔKNM cân tại K
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!
Tam giác ABC có B = C
=> Tam giác ABC cân tại A
=> AB = AC
ABD + ABC = 1800 (2 góc kề bù)
ACE + ACB = 1800 (2 góc kề bù)
mà ABC = ACB (gt)
=> ABD = ACE
Xét tam giác ABD và tam giác ACE có:
AB = AC (chứng minh trên)
ABD = ACE (chứng minh trên)
BD = CE (gt)
=> Tam giác ABD = Tam giác ACE (c.g.c)
BD = CE (gt)
=> CB + BD = BC + CE
=> CD = BE
Xét tam giác ACD và tam giác ABE có:
AC = AB (chứng minh trên)
ACD = ABE (gt)
CD = BE (chứng minh trên)
=> Tam giác ACD = Tam giác ABE (c.g.c)
=> AD = AE (2 cạnh tương ứng)
=> Tam giác ADE cân tại A có AH là đường cao
=> AH là tia phân giác của DAE
cảm mơn bạn Phương An nhiều nhaa!!!!!