Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tư vẽ hình
Xét \(\Delta ADE\) và \(\Delta CEF\)có:
\(\hept{\begin{cases}AE=EC\left(gt\right)\\\widehat{AED}=\widehat{CEF}\\DE=EF\left(gt\right)\end{cases}}\)
\(\Rightarrow\Delta ADE=\Delta CEF\left(c.g.c\right)\)
Do đó \(\widehat{A}=\widehat{ECF}\)(hai góc tương ứng)
Mà hai góc này ở vị trí so le trong
Do đó AB song song với CF (dấu hiệu nhận biết)
A B C D E F
\(\text{Xét }\)\(\Delta ADE\)\(\text{và}\) \(\Delta CEF\)\(\text{ta có:}\)
\(AE=CE\)\(\text{( E là trung điểm của AC - GT)}\)
\(\widehat{AED}=\widehat{CEF}\)\(\text{( hai góc đối đỉnh)}\)\(DE=EF\)\(\text{(GT)}\)
\(\text{ Do đó:}\Delta ADE=\Delta CFE\left(c-g-c\right)\)
\(\text{Suy ra : }AD=CF\text{( hai góc tương ứng)}\)
\(\text{Mà AD = BD ( D là trung điểm của AB ) }\Rightarrow BD=CF\left(đpcm\right)\)
hình tự vẽ nha
a) Xét tam giác AED và tam giác CEF có:
AE=EC (GT)
góc AED=góc CEF (đối đỉnh)
ED=EF (GT)
suy ra AD=CF
mà AD=BD (GT)
suy ra CF=BD
Xét tam giác ABC có: AD=DB (GT) và AE=EC (GT)
suy ra DE là đường trung bình của tam giác ABC (đ/n) suy ra DE=1/2BC (t/c)
mà DE=1/2DF (GT)
suy ra BC=DF
Xét tứ giác DBCF có: CF=DB, DF=BC (CMT)
suy ra: tứ giác DBCF là hình bình hành (dhnb) suy ra CF//AB
b) Có DE là đường trung bình của tam giác ABC (CMT) suy ra DE//BC (t/c)
Có DE=1/2BC (CMT) hay BC=2.DE
a) Xét tg ADE và CFE, có :
AE=EC(gt)
ED=EF(gt)
\(\widehat{AED}=\widehat{FEC}\left(đđ\right)\)
=> Tg ADE=CFE (c.g.c)
=> CF=AD
Mà AD=BD(gt)
=> CF=BD (đccm)
- Do tg ADE=CFE (cmt)
\(\Rightarrow\widehat{FCE}=\widehat{EAD}\)
Mà chúng là 2 góc slt
=> CF//AB (đccm)
b) Nối F với B
Xét tg BCF và FDB có :
BD=FC(cmt)
BF-cạnh chung
\(\widehat{ABF}=\widehat{BFC}\)(AB//CF)
=> Tg BCF=FDB(c.g.c)
\(\Rightarrow\widehat{DFB}=\widehat{FBC}\)
Mà chúng là 2 góc slt
=> DF//BC (DE//BC) (đccm)
-Do tg BCF=FDB(cmt)
=> DF=BC
Mà : \(DE=EF=\frac{1}{2}DF\)
\(\Rightarrow DE=\frac{1}{2}BC\)
=> BC=2DE (đccm)
#H
(tự vẽ hình)
a, Xét tam giác AED vs tam giác CEFcó:
AE=EC(gt)
DE=EF(gt)
góc AED=góc FEC (đối đỉnh)
=> 2 tam giác bằng nhau (c.g.c)
=>AD=FC(tương ứng)
b,Vì tam giác AED=CEF(cmt)
=> góc AED = góc FEC tương ứng. mà 2 góc ở vị trí so le trong nên => AD//FC
=>AB//FC tương ứng
c, dễ tự CM
A D B C E F a) Xét ΔADE và ΔCEF có:
EA = EC (gt)
∠AED = ∠EFC (đối đỉnh)
ED = EF (gt)
⇒ΔADE = ΔCEF (c-g-c)
b) Vì ΔADE = ΔCEF (c-g-c) nên ∠BAC = ∠ACE (cặp góc so le trong)
Vậy AB // CF