Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gợi ý :
Tam giác BMA = tam giác CMD ( c. g. c )
=> AB = CD ; góc BAM = góc MDC
ta có : AB < AC
=> CD < AC
=> góc CAD < góc CDA ( qh ... )
hay góc CAM < góc CDM
mà góc CDM = góc BAM
=> Góc CAM < Góc BAM
Tự vẽ hình nhé bn!
a)\(\text{Vì BD=BA nên ta có }\Delta BAD\text{ cân tại B }\Rightarrow\widehat{BAD}=\widehat{ADB}\left(đpcm\right)\)
b)\(\text{Kẻ DE vuông góc với AB. }\)
\(DE//AC\hept{\begin{cases}DE\perp AB\\CA\perp AB\end{cases}}\)
\(\Rightarrow\widehat{CAD}=\widehat{ADE}\left(\text{so le trong}\right)\)
dễ rồi đó tự lm tiếp nhe bận rồi!
hình bạn tự vẽ nha
a) Có BD=BA(giả thiết)
=>tam giác ABD cân tại B
=>góc BAD = góc ADB
b)có góc BAD + góc DAC =90 độ
góc BDA + góc HAD=90 độ
SUY ra góc HAD = góc DAC
Do đó AD là tia phân giác của góc HAC
c)Xét tam giác AHD và tam giác AKD có
góc AHD= góc AKD(= 90 độ)
Góc HAD = góc DAC(chứng minh trên)
Cạnh AD chung
=>tam giác AHD = tam giác AKD(c/h-g/n)
=>AH=AK(2 cạnh tương ứng)
d)Xét tam giác ABC,theo bất đẳng thức tam giác ta có
AB+AC<BC
=>AB+AC<BC+2AH
a, góc BAH = góc HCA vì cùng phụ vời góc HAC
b, Kẻ DK vuông góc với AC.
BA= BD(gt) nên tam giác ABD cân tại A
Suy ra: góc BAD= góc BDA
Mà góc BDA +góc HAD = 90 độ (vì tam giác AHD vuông tại A) ,góc BAD+ góc KAD =góc BAC =90 độ
Do đó: góc HAD =góc KAD
Chứng minh được tam giác HAD =tam giác KAD (cạnh huyền-góc nhọn)
Dẫn đến góc HAD =góc KAD hay góc HAD= góc DAC và lại có tia AD nằm giữa 2 tia AH,AC
Vậy AK là tia p/g của góc HAC
c, tam giác HAD= tam giác KAD(cmt) nên AH=AK
DH=DK (1)
tam giác DKC vuông tại K nên DK<DC (2) và KC<DC
TỪ (1) và (2) suy ra: DH<DC
d, Ta có: AB =BD(gt), AK =AH(cmt) và KC<DC(cmt)
Do đó: AB +AK +KC < BD +AH +DC
Nên : AB+AC < BC+AH < BC +2AH
Vậy AB+AC < BC+ 2AH
A C B H D M
Nhường mấy bác cao tay =)))
vì AB>AC => \(\widehat{BAH}>\widehat{CAH}\Rightarrow2\widehat{BAH}>\widehat{CAH}+\widehat{BAH}\Rightarrow\widehat{BAH}>\dfrac{\widehat{BAC}}{2}\Rightarrow\widehat{BAH}>\widehat{BAD}\)