Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Dễ r , tự làm nhé bn !
b, TG ABC có A = 90, BM=MC => AM= BM =CM = 1/2 BC
Chỉ ra AN = CN , xét TG AKC có AKC = 90, AN= CN => KN= AN = AC = 1/2 AC
Xét TG ABC có A = 90, BC > AC ( quan hệ ...)
=> 1/2 BC > 1/2 AC
hay MC > KN
a, Dễ r , tự làm nhé bn !
b, TG ABC có A = 90, BM=MC => AM= BM =CM = 1/2 BC
Chỉ ra AN = CN , xét TG AKC có AKC = 90, AN= CN => KN= AN = AC = 1/2 AC
Xét TG ABC có A = 90, BC > AC ( quan hệ ...)
=> 1/2 BC > 1/2 AC
hay MC > KN
GT | △ABC cân tại A. AB = AC = 13cm. BC = 24cm. AH ⊥ BC (H BC). BK = CI. BM ⊥ AK. CN ⊥ AI |
KL | a, △AHC = △AHB b, AH = ? c, △ABK = △ACI d, △MBK = △NCI |
Bài giải:
a, Vì △ABC cân tại A (gt) => AB = AC và ABC = ACB
Xét △AHC vuông tại H và △AHB vuông tại H
Có: AH là cạnh hcung
AC = AB (cmt)
=> △AHC = △AHB (ch-cgv)
b, Ta có: BC = BH + HC
Mà BC = 24 cm
=> BH + HC = 24 cm
Mà HC = HB (△AHC = △AHB)
=> HC = HB = 24 : 2 = 12 (cm)
Xét △ABH vuông tại H có: AH2 + BH2 = AB2 (định lý Pytago)
=> AH2 + 122 = 132 => AH2 = 25 => AH = 5
c, Ta có: ABK + ABC = 180o (2 góc kề bù)
ACI + ACB = 180o (2 góc kề bù)
Mà ABC = ACB (cmt)
=> ABK = ACI
Xét △ABK và △ACI
Có: AB = AC (cmt)
ABK = ACI (cmt)
BK = CI (gt)
=> △ABK = △ACI (c.g.c)
d, Xét △MBK vuông tại M và △NCI vuông tại N
Có: BK = CI (gt)
MKB = NIC (△ABK = △ACI)
=> △MBK = △NCI (ch-gn)
gọi giao của BK và CI là T
ta có : Ab=AC=>tam giác ABC cân tại A
=> góc ABC= góc ACB
ABD=180o-ABC
ACE=180o-ACB
=> góc ABD= góc ACE
xét tam giác ABD và tam giác ACE có:
BD=CE(gt)
góc ABD=góc ACE
AB=AC(gt)
=> tam giác ABD=tam giác ACE(c.g.c)
=> AK=AE=> tam giác AKE cân tại A
MB=MC
BD=CE
MD=MB+BD
ME=MC+CE
=> MD=ME
tam giác AKE cân tại A có AM là đường trung tuyến=> AM đồng thời là phân giác góc KAE(1)
xét 2 tam giác vuông KBD và ICE có:
góc D= góc E(tam giác AKE cân tại A)
DB=EC(gt)
=>tam giác KBD=tam giác ICE(CH-GN)
=>KD=IE
AD=AE
AK=AD-DK
AI=AE-IE
=> AK=AI
xét 2 tam giác vuông AKB và tam giác AIC có:
AK=AI(cmt)
AB=AC(gt)
=>tam giác AKB=tam giác AIC(CH-CGV)
=> AT là tia phân giác góc KAE(2)
từ (1)(2)=> AI trùng AM=> A,M,T thẳng hàng
=> AM,BK,CT đồng quy tại T
tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB
ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)
dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)
suy ra AM = AN ( 2 cạnh tương ứng )
tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân
b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )
dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )
suy ra BA = Ck ( 2 cạnh tương ứng )
c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân
\(\Delta AHK\)và \(\Delta AMN\) có chung đỉnh
mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)
mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN
d) kéo dài HB và CK cắt nhau tại O
nối AO
xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)có
AO là cạnh huyền chung
AH = AK
do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )
e) xét tam giác \(BAD\)và \(\Delta CAD\)có
BA = CA ( tam giác ABC cân tại A )
DA = DC (gt)
AD là canh chung
do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)
phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã
tiếp nhé
suy ra góc BAD = góc CAD ( 2 góc tương ứng )
vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)
ta có BH = CK ( cmt)
và HO = KO (cmt)
suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )
hay BO = OC
xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)
do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)
suy ra góc BAO = góc CAO ( 2 góc tương ứng )
vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)
từ (1) và (2) suy ra A;D;O thẳng hàng
a) △ABC cân ⇒ \(\widehat{ABC}=\widehat{ACB}\) ⇒\(\widehat{ABM}=\widehat{ACN}\)
Xét △ABM và △ACN có:
\(AB=AC\) ( Vì △ABC cân)
\(\widehat{ABM}=\widehat{ACN}\left(cmt\right)\)
BM=CN(gt)
Do đó : △ABC=△ACN\(\left(c.g.c\right)\)
b)Xét △vuoongAHB và △vuoongAKC có
AB=AC(vì △ABC cân)
\(\widehat{HAB}=\widehat{KAC}\) (vì △ABM=△ACN)
⇒△AHB=△AKC ( cạnh huyền góc nhọn)
⇒AH=AK
a, Ta có : ^ABM = ^MBC - ^ABC (1)
^ACN = ^NCB - ^ACB (2)
Từ (1) ; (2) suy ra ^ABM = ^ACN
Xét tam giác ABM và tam giác ANC có :
^ABM = ^ANC ( cmt )
AB = AC ( gt )
MB = NC (gt)
Vậy tam giác ABM = tam giác ACN ( c.g.c )
=> AM = AN ( 2 cạnh tương ứng )
Xét tam giác AMN có : AN = AM
Vậy tam giác AMN là tam giác cân tại A
=> ^M = ^N (3)
b, Ta có : ^AMB = ^ABH ( cùng phụ ^HBM ) (4)
^ACK = ^ANC ( cùng phụ ^KCN ) (5)
Từ (3) ; (4) ; (5) suy ra : ^ABH = ^ACK
=> ^HBM = ^KCN
Xét tam giác AHB và tam giác AKC ta có :
^ABH = ^ACK ( cmt )
AB = AC
^AHB = ^AKC = 900
Vậy tam giác AHB = tam giác AKC ( ch - gn )
=> AH = AK ( 2 cạnh tương ứng )
c, Ta có : ^HBM = ^OBC ( đối đỉnh )
^KCN = ^BCO ( đối đỉnh )
mà ^HBM = ^KCN (cmt)
Xét tam giác OBC có :
^OBC = ^OCB vậy tam giác OBC cân tại O
Đề sai kiểm tra lại.
Đề có đúng không vậy bn, mình thấy cứ sai sai