Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
10000000000000000000000000000000000000000000000000000000000
Gợi ý:
a) Tam giác AHB= Tam giác DBH (c-g-c) vì có góc H=góc B, BH là cạnh chung, AH=BD.
b) Tam giác AHB= Tam giác DBH => góc DHB=ABH mà 2 góc nằm so le trong nên AB//HD.
c) Tam giác BCD= Tam giác HCA (g-c-g) vì có góc BDC=góc HAC (AB//HD), góc B= góc H, BD=AH. => O t/đ BH.
d) góc BDH=750=> góc BHD=150=>góc ABC=150=>góc ACB là góc vuông.
a: Xét ΔAHB vuông tại H và ΔDBH vuông tại B có
BH chung
AH=DB
Do đó: ΔAHB=ΔDBH
a: Xét ΔAHB vuông tại H và ΔDBH vuông tại B có
BH chung
AH=DB
Do đó: ΔAHB=ΔDBH
a) Xét tam giác AHB và tam giác DBH có:
AH=BD (giả thiết)
Góc AHB=góc DBH (=90o)
BH là cạnh chung
=> Tam giác AHB = tam giác DBH (c.g.c)
b) Theo chứng minh phần a: Tam giác AHB = tam giác DBH => Góc ABH = góc BHD (2 góc tương ứng)
Mà góc ABH và góc BHD là 2 góc so le trong => AB//DH
c) Tam giác ABH có: \(\widehat{BAH}+\widehat{AHB}+\widehat{ABH}=180^o\) (tổng 3 góc trong tam giác)
=>\(35^o+90^o+\widehat{ABH}=180^o\Rightarrow\widehat{ABH}=180^o-35^o-90^o=55^o\)
Tam giác ABC có: \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^o\)(tổng 3 góc trong tam giác)
=>\(90^o+\widehat{ACB}+55^o=180^o\Rightarrow\widehat{ACB}=180^o-90^o-55^o=35^o\)
Xét tam giác ABH có góc BAH = 35 º ( gt ) , góc AHB = 90 º do AH vuông góc BC.
Vậy góc ABC = 180º-90º-35º = 55º .
Do đó góc ACB = 180º - góc ABC - góc BAC
= 180º-90º-55º = 35º
Hình...tự vẽ...
a) Xét ΔABH và ΔBHD có:
\(AH=BD\left(gt\right)\)
\(\widehat{AHB}=\widehat{HBD}=90^{0^{ }}\)
\(BH\) là cạnh chung
\(\Rightarrow\Delta ABH=\Delta DHB\left(c.g.c\right)\)
b) \(Do:\Delta ABH=\Delta DHB\left(cmt\right)\)
\(\Rightarrow\widehat{ABH}=\widehat{BHD}\) ( hai góc tương ứng) , mà 2 góc ở vị trí so le trong ⇒ AB // DH
c) ΔABH vuông tại H nên:
\(\widehat{ABH}+\widehat{BAH}=90^0\)
\(\widehat{ABH}+35^0=90^0\)
\(\Rightarrow\widehat{ABH}=90^0-35^0\)
\(\Rightarrow\widehat{ABH}=55^0\)
+)Trong ΔABC có:
\(\widehat{BAC}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(90^0+35^0+\widehat{ACB}=180^0\)
\(125^0+\widehat{ACB}=180^0\)
\(\Rightarrow\widehat{ACB}=180^0-125^0\)
\(\Rightarrow\widehat{ACB}=55^0\)