Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AIMJ có
\(\widehat{AIM}=\widehat{AJM}=\widehat{JAI}=90^0\)
=>AIMJ là hình chữ nhật
b: AIMJ là hình chữ nhật
=>MI//AJ và MI=AJ
MI=AJ
MN=MI
Do đó: MN=AJ
MI//AJ
N\(\in\)MI
Do đó: MN//JA
Xét tứ giác AMNJ có
AJ//MN
AJ=MN
Do đó: AMNJ là hình bình hành
a) Vì O cách đều 3 cạnh của tam giác nên OD = OE = OF
Áp dụng định lý Pytago vào tam giác vuông OBF và tam giác vuông ODB ta có:
BF=√OB2−OF2BF=OB2−OF2
BD=√OB2−OD2BD=OB2−OD2
Mà OF = OD nên BF = BD.
Tương tự áp dụng định lý Pytago vào tam giác vuông OEC và tam giác vuông ODC suy ra CE = CD
∆BAM có AB = BM nên ∆BAM là tam giác cân tại B ⇒ˆBAM=ˆBMA⇒BAM^=BMA^
Xét ∆BAM có BF = BD, BA = BM nên theo định lý Ta – lét ta có :
BFBA=BDBM⇒DF//AM⇒BFBA=BDBM⇒DF//AM⇒ DFAM là hình thang
Hình thang DFAM có ˆFAM=ˆAMDFAM^=AMD^ nên DFAM là hình thang cân
⇒{MF=ADAF=MD⇒{MF=ADAF=MD
∆ANC có AC = CN nên ∆ANC cân tại C⇒ˆCAN=ˆCNA⇒CAN^=CNA^
Xét ∆ANC có CE = CD, CA = CN nên theo định lý Ta – lét ta có :
CECA=CDCN⇒DE//AN⇒CECA=CDCN⇒DE//AN⇒ DEAN là hình thang
Hình thang DEAN có ˆCAN=ˆCNACAN^=CNA^ nên DEAN là hình thang cân
⇒{NE=ADAE=ND⇒{NE=ADAE=ND
⇒MF=NE⇒MF=NE
b) Xét ∆OEA và ∆ODN ta có :
⎧⎪⎨⎪⎩OE=ODˆOEA=ˆODNEA=DN{OE=ODOEA^=ODN^EA=DN⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA⇒ΔOEA=ΔODN(c−g−c)⇒ON=OA
Xét ∆OAF và ∆OMD ta có :
⎧⎪⎨⎪⎩AF=MDˆOFA=ˆODMOF=OD{AF=MDOFA^=ODM^OF=OD⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM⇒ΔOAF=ΔODM(c−g−c)⇒OA=OM
⇒OM=ON⇒OM=ON hay ∆MON cân tại O.
\(1,\left\{{}\begin{matrix}AM=MB\\AN=NC\end{matrix}\right.\Rightarrow MN\) là đtb \(\Delta ABC\Rightarrow MN=\dfrac{1}{2}BC.hay.2MN=BC\)
\(2,\) Vì \(MN//BC\left(t/c.đtb\right)\Rightarrow MNCB\) là hình thang
Mà \(\widehat{ABC}=\widehat{ACB}\left(\Delta ABC.cân\right)\)
\(\Rightarrow MNCB\) là hthang cân
\(3,\left\{{}\begin{matrix}\widehat{MNO}=\widehat{OCB}\\\widehat{NMO}=\widehat{OBC}\end{matrix}\right.\Rightarrow\Delta MNO\sim\Delta COB\left(g.g\right)\\ \Rightarrow\dfrac{MN}{BC}=\dfrac{MO}{OC}\Rightarrow\dfrac{2MI}{2CK}=\dfrac{MO}{OC}\Rightarrow\dfrac{MI}{CK}=\dfrac{MO}{OC}\)
Lại có \(\widehat{IMO}=\widehat{OCK}\left(so.le.trong\right)\)
\(\Rightarrow\Delta IMO\sim\Delta KCO\left(c.g.c\right)\)
Do đó \(\widehat{MOI}=\widehat{KOC}\Rightarrow I;O;K\) thẳng hàng \(\left(1\right)\)
Chứng minh tương tự, ta được \(\Delta MAI\sim\Delta BAK\Rightarrow\widehat{AHE}=\widehat{BHF}\Rightarrow A;I;K\) thẳng hàng \(\left(2\right)\)
\(\left(1\right)\left(2\right)\Rightarrow A;I;O;K\) thẳng hàng
1) Xét ΔABC cân tại A, có:
M là trung điểm của AB, N là trung điểm của AC
⇒ MN là đường trung bình ΔABC
⇒ MN = 1/2BC ⇒ BC = 2MN (ĐPCM)
2) Xét tứ giác MNCB, có:
MN // BC(MN là đường trung bình)
MB = NC (do AB = AC và M, N là trung điểm AB, AC)
⇒ MNCB là hình thang.
mà:
\(\widehat{MBC}=\widehat{NCB}\) (do ΔABC cân tại A)
⇒ MNCB là hình thang cân.
d. Xét ΔAMN, có:
\(\widehat{AMN}=\widehat{ANM}\) (đồng vị so với \(\widehat{ABC},\widehat{ACB}\))
⇒ ΔAMN cân tại A, mà AI ⊥ MN (do MN là cạnh đáy, I là trung điểm MN) ⇒ A,I thẳng hàng
Chứng minh tương tự cho tam giác ABC với BC là cạnh đáy có K là trung điểm, ta được A, I, K thẳng hàng (1)
Có ΔMON cân, do \(\widehat{ONM}=\widehat{OMN}\) vì \(\widehat{BMN}=\widehat{CNM}\) ⇒ OI thẳng hàng do I là trung điểm cạnh đáy MN của tam giác cân. (2)
Từ (1) và (2) ⇒ A, I, O, K thẳng hàng.
a: Xét ΔABC có
AM/AB=AN/AC
Do đó: MN//BC
hay BMNC là hình thang
mà BN=CM
nên BMNC là hình thang cân
\(c,\) Vì AD//BP và AD=BP nên ADPB là hbh
Do đó O là trung điểm AP và BD
Xét tam giác ADP có DO và AN là trung tuyến giao tại G nên G là trọng tâm
Do đó \(DG=\dfrac{2}{3}DO\)
Mà \(DO=\dfrac{1}{2}BD\Rightarrow DG=\dfrac{2}{3}\cdot\dfrac{1}{2}BD=\dfrac{1}{3}BD\)
gfvfvfvfvfvfvfv555