Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi J,R lần lượt là giao điểm của AI, AK với BC.
Ta có biến đổi góc:^BAR=^BAH+^HAR=^ACR+^RAC=^ARB vì vậy tam giác ABR cân tại B suy ra BO đồng thời là đường cao
Tương tự thì CO là đường cao khi đó O là trực tâm của tam giác AIK
Vậy ta có đpcm
hình vẽ trong Thống kê hỏi đáp
bài 1:
AI _|_ BC tại I => \(\widehat{AIB}=\widehat{AIC}=90^o\)
BD _|_ AC tại D => \(\widehat{ADB}=\widehat{CDB}=90^o\)
xét tam giác AIC và tam giác BDC có \(\hept{\begin{cases}\widehat{AIB}=\widehat{AIC}=90^o\\\widehat{C}chung\end{cases}}\)
=> tam giác AIC đồng dạng với tam giác BCD (g-g)
b) xét tam giác ABC có AI và BD là 2 đường cao cắt nhau tại H => H là trực tâm tam giác ABC
=> CH _|_ AB => H là trực tâm tam giác ABC
xét tam giác CEB và tam giác IAB có: \(\hept{\begin{cases}\widehat{CEB}=\widehat{AIB}=90^o\\\widehat{B}chung\end{cases}\Rightarrow\Delta CEB~\Delta AIB\left(g-g\right)\Rightarrow\frac{CB}{AB}=\frac{EB}{IB}}\)
=> CB.IB=EB.AB (1)
xét tam giác CIH và CEB có \(\hept{\begin{cases}\widehat{CIH}=\widehat{CEB}=90^o\\\widehat{C}chung\end{cases}\Rightarrow\Delta CIH~\Delta CEB\left(g-g\right)\Rightarrow\frac{CI}{CE}=\frac{CH}{CB}}\)
=> CI.CB=CE.CH (2)
từ (1) và (2) => EB.AB+CH.CE=CB.IB+CI.CB
\(\Leftrightarrow BE\cdot BA+CH\cdot CE=\left(IB+IC\right)BC=BC^2\)
\(\Leftrightarrow BE\cdot BA+CH\cdot CE=BC^2\)
A B C D E H a/
Xét tam giác BCE và tam giác CBD có:
góc BEC = góc CDE (90o)
góc EBC = góc DCB (2 góc ở đáy của tam giác cân)
BC: cạnh chung
Nên tam giác BCE = tam giác CBD (cạnh huyền-góc nhọn)
Do vậy BE = CD (2 cạnh tương ứng) (1)
mà AB = AC (gt) (2)
Từ (1) và (2) suy ra\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Áp dụng hệ quả định lí Ta-lét, ta được ED//BC
b/
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\Leftrightarrow\dfrac{AE}{AD}=\dfrac{AC}{AB}\Leftrightarrow AE.AB=AD.AC\)
c/
(Hình như đề sai rồi bạn?! Tam giác OBC đồng dạng với chính nó là tam giác OBC là đúng rồi cần gì phải chứng minh nữa??)
d/
Vì tam giác ABC là tam giác cân (gt) nên đường cao xuất phát từ đỉnh cân của tam giác đồng thời cũng là đường trung tuyến nên BH=HC => \(\dfrac{BH}{HC}=1\) (3)
Từ (1), (2) có: \(\dfrac{AE}{EB}.\dfrac{CD}{DA}=1\) (4)
Từ (3) và (4) suy ra \(\dfrac{AE}{EB}.\dfrac{BH}{HC}.\dfrac{CD}{DA}=\dfrac{BH}{HC}\left(\dfrac{AE}{EB}.\dfrac{CD}{DA}\right)=1.1=1\)
Hình bạn tự vẽ nhé
a) Xét tam giác ABD và tam giác ACE ta có:
\(\hept{\begin{cases}\widehat{BAC}-chung\\\widehat{BDA}=\widehat{CEA}=90^o\end{cases}}\Rightarrow\Delta ABD~\Delta ACE\left(g.g\right)\)
b) H là giao điểm của BD và CE suy ra H là trực tâm của tam giác ABC
=> AH là đường cao thứ 3 của tam giác ABC => \(AH\perp BC\)
Xét \(\Delta CEB\) và \(\Delta CKH\) ta có:
\(\hept{\begin{cases}\widehat{CEB}=\widehat{CKH}=90^o\\\widehat{ECB}-chung\end{cases}}\Rightarrow\Delta CEB~\Delta CKH\left(g.g\right)\Rightarrow\frac{CE}{CK}=\frac{BC}{CH}\Rightarrow CE.CH=BC.CK\)(1)
c) Ta có: Xét \(\Delta BKH\) và \(\Delta BDC\) ta có:
\(\hept{\begin{cases}\widehat{DBC}-chung\\\widehat{HKB}=\widehat{BDC}=90^o\end{cases}}\Rightarrow\frac{BK}{BD}=\frac{BH}{BC}\Rightarrow BK.BC=BH.BD\)(2)
Cộng theo vế của (1) và (2):
\(BH.BD+CH.CE=BC\left(CK+BK\right)=BC^2\left(đpcm\right)\)