K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 4 2022

20 tháng 4 2022

Xét tam giác ABC có AM là đường cao đồng thời là đường trung tuyến

\(\Rightarrow\Delta ABC\) cân tại A

1.Ta có : Tam giác ABC là tam giác vuông cân.

=>AB=AC

Mặt khác có:

Mà =>lại có: Tam giác HBA vuông tại H và tam giác KAC vuông tại K

Từ:=> Tam giác HBA = Tam giác KAC [ch-gn]

=> BH=AK [đpcm]

Mặt khác mà :=> Tam giác AHM= Tam giác CKM [c.g.c] vì

Có:AM=MC [AM là trung tuyến ứng với cạnh huyền]

AH=CK [ câu a ]

=>MH=MK

Ta có: [AM là đường cao]

Từ => HMK vuông

Kết hợp =>MHK là tam giác vuông cân.

TICK CHO MK NHA CHÚC BẠN HỌC GIỎI.hihi

 

 

 

MK BT BÀI NÀY MK LÀM BẠN TICK CHO MK NHA

26 tháng 1 2016

xin lỗi em mới học lớp 6 thôi

26 tháng 1 2016

kho kho qua kho ?....

Xét ΔABC có

AM vừa là đường phân giác, vừa là đường trung tuyến

nên ΔABC cân tại A

26 tháng 2 2020

A B C H D

Xét tam giác ABC có góc B > góc C suy ra AC > AB

Xét tam giác vuông ABH và tam giác vuông ACH

chung AH

có AC > AB (CMT)

suy ra HC > HB

c) Vì HC > HB (CMT)

Xét tam giác vuông BHD và tam giác vuông CHD

Có chung DH , BC >HB nên DC >DB

Xét tam giác BDC có DC > DB nên góc DBC > góc DCB

26 tháng 2 2020

Bài 16: 

A B C M D

Xét tam giác ABM và tam giác DCM

có AM=DM (GT)

góc AMB=góc DMC (đối đỉnh)

BM=MC (GT)

suy ra tam giác ABM=tam giác DCM (c.g.c)   (1)

b) Từ (1) suy ra góc MAB = góc MDC (hai góc tuơng ứng)

mà  góc MAB so le trong  góc MDC

suy ra AB // CD 

c) Từ (1) suy ra AB = CD

Xét tam giác ACD có AC + CD > AD

mà AD=2AM, AB=CD (CMT)

suy ra AC +AB >2AM

13 tháng 4 2022

a. +) Tam giác ABC cân tại A:

    => góc B = góc C

    => AB = AC

    => AM + BM = AN + CN

    mà BM và CN là 2 đường trung tuyến của AB và AC

    => AM = BM = AN = CN

    Xét tam giác BNC và tam giác CMB:

  BM = CN (cmt)

  góc B = góc C (cmt)

  BC chung

 => tam giác BNC = tam giác CMB (c-g-c)

 +) Ta có: BM , CN là 2 đường trung tuyến của tam giác ABC, cắt nhau tại I

  => I là trọng tâm của tam giác ABC

  => BI = \(\dfrac{2}{3}BM\)

       CI = \(\dfrac{2}{3}CN\)

  mà BM = CN

 => BI = CI

 => tam giác BIC cân tại I (đpcm)

b. +)Xét tam giác AIB và tam giác AIC:

  AI chung

  AB = AC

  BI = CI

  => tam giác AIB = tam giác AIC (c-c-c)

 => góc BAI = góc CAI (2 góc tương ứng)

  => AI là tia phân giác góc A (1)

  +) Xét tam giác AKB và tam giác AKC:

   AK chung

   AB = AC

   BK = CK (vì K là trung điểm BC)

=> tam giác AKB = tam giác AKC (c-c-c)

  => AK là tia phân giác góc A (2)

 Từ (1) và (2) , suy ra:

  AI trùng AK

=> A, I, K thẳng hàng