Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(P\left(1\right)=2-3-4=-5\)
b, \(H\left(x\right)=P\left(x\right)-Q\left(x\right)=x^2-9\)
c, Ta có \(H\left(x\right)=\left(x-3\right)\left(x+3\right)=0\Leftrightarrow x=3;x=-3\)
\(x^2-3x-4=0\)
\(< =>x^2+x-4x-4=0\)
\(< =>x\left(x+1\right)-4\left(x+1\right)=0\)
\(< =>\left(x-4\right)\left(x+1\right)=0\)
\(< =>\orbr{\begin{cases}x=4\\x=-1\end{cases}}\)
\(2x^3-x^2-2x+1=0\)
\(< =>x^2\left(2x-1\right)-\left(2x-1\right)=0\)
\(< =>\left(x^2-1\right)\left(2x-1\right)=0\)
\(< =>\left(x-1\right)\left(x+1\right)\left(2x+1\right)=0\)
\(< =>\hept{\begin{cases}x=1\\x=-1\\x=-\frac{1}{2}\end{cases}}\)
a: P(1)=2-3-4=-5
b: \(P\left(x\right)+Q\left(x\right)=3x^2-6x+1\)
\(P\left(x\right)-Q\left(x\right)=x^2-9\)
c: Đặt H(x)=0
=>(x-3)(x+3)=0
=>x=3 hoặc x=-3
h(x) + g(x) = f(x)
=> h(x)= f(x) - g(x) = \(3x^4+2x^2-2x^4+x^2-5x-\left(x^4-x^2-2x+6+3x^2\right)=x^2-3x-6\)\(h\left(-\dfrac{1}{3}\right)=\left(-\dfrac{1}{3}\right)^2-3\left(-\dfrac{1}{3}\right)-6=\dfrac{-44}{9}\)
\(h\left(\dfrac{3}{2}\right)=\left(\dfrac{3}{2}\right)^2-3\cdot\dfrac{3}{2}-6=-\dfrac{33}{4}\)
\(x^2-3x-6=0\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3+\sqrt{33}}{6}\\x=\dfrac{3-\sqrt{33}}{6}\end{matrix}\right.\)
H(x)=2x^2+5x
nghiệm của H(x) là :
H(x)=0 khi x=0
vì \(2.0^2+5.0=0\)
vậy nghiệm của H(x) là 0
đúng chưa bạn nếu đúng thì kết bạn với mình nhé
\(H\left(x\right)=3x^2+3x-1\)
Ta cho H(x) =0
\(\Rightarrow H\left(x\right)=3x^2+3x=1\)
\(\Rightarrow x\left(3x+3\right)=1\)
\(\Rightarrow\hept{\begin{cases}x=1\\3x+3=1\end{cases}\Rightarrow x=1}\)
Vậy nghiệm của đa thức H(x) =1
\(H\left(z\right)=0\Leftrightarrow z^2+z-\frac{1}{3}=0\\ \Leftrightarrow\left(z+\frac{1}{2}\right)^2=\frac{7}{12}\\ \Leftrightarrow\orbr{\begin{cases}z+\frac{1}{2}=\frac{2\sqrt{21}}{12}\\z+\frac{1}{2}=-\frac{2\sqrt{12}}{12}\end{cases}}\)
<=>3x^2+x=0
<=>x.(3x+1)=0
<=>\(\orbr{\begin{cases}x=0\\3x+1=0\end{cases}}\) <=>\(\orbr{\begin{cases}x=0\\3x=-1\end{cases}}\)<=>\(\orbr{\begin{cases}x=0\\x=-\frac{1}{3}\end{cases}}\)
Vậy nghiệm của đa thức h(x) là 0: -1/3
ta có: H(x)=0 <=> \(3x^4-3x^2\)=0
=> \(3x^2x^2-3x^2\)=0
=> \(3x^2\left(x^2-1\right)=0\)
=> \(\orbr{\begin{cases}3x^2=0\Rightarrow x=0\\x^2-1=0\Rightarrow x=1\end{cases}}\)
vậy x=0, x=1 là nghiệm của đa thức H(x)
Ta có: Cho H(x) = 0
=> 3x4 - 3x2 = 0
=> 3x2.(x2 - 1) = 0
=> \(\orbr{\begin{cases}3x^2=0\\x^2-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x^2=0\\x^2=1\end{cases}}\)
=> \(\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)
Vậyx thuộc {0; 1; -1} là nghiệm của đa thức H(x)