K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2017

f(1)=a.12+b.1+c=a+b+c=b(vì a và c đối nhau)

f(-1)=a.(-1)2+b.(-1)+c=a+(-b)+c=-b(vì a và c đối nhau)

=>f(1).f(-1)=-b.b<0(vì tích 2 số đối nhau luôn nhỏ hơn 0)

Ta có: f(0)=1

<=> ax+bx+c=1

<=> c=1

          f(1)=0

<=>ax+bx+c=0

<=> a+b+c=0

mà c=1

=>a+b=-1(1)

      f(-1)=10

<=> ax2 +bx +c=10

<=>a-b+c=10

mà c=1

=>a-b=9(2)

Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9

                           <=> 2b=-10

                           <=> b=-5

                           =>a=4

Vậy a=4,b=-5,c=1

Nhớ k đúng cho mik

17 tháng 1 2021

f(0) = 1

\(\Rightarrow\) a.02 + b.0 + c = 1 

\(\Rightarrow\) c = 1

Vậy hệ số a = 0; b = 0; c = 1

f(1) = 2

\(\Rightarrow\) a.12 + b.1 + c = 2

\(\Rightarrow\) a + b + c = 2

Vậy hệ số a = 1; b = 1; c = 1

f(2) = 4

\(\Rightarrow\) a.22 + b.2 + c = 4

\(\Rightarrow\) 4a + 2b + c = 4

Vậy hệ số a = 4; b = 2; c = 1

Chúc bn học tốt! (chắc vậy :D)

 

AH
Akai Haruma
Giáo viên
12 tháng 2 2023

Lời giải:
a. 

$f(-1)=a-b+c$

$f(-4)=16a-4b+c$

$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$

$\Rightarrow f(-4)=6f(-1)$

$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)

b.

$f(-2)=4a-2b+c$

$f(3)=9a+3b+c$

$\Rightarrow f(-2)+f(3)=13a+b+2c=0$

$\Rightarrow f(-2)=-f(3)$

$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)

2 tháng 3 2023

a. 


(

1
)
=



+

f(−1)=a−b+c


(

4
)
=
16


4

+

f(−4)=16a−4b+c



(

4
)

6

(

1
)
=
16


4

+


6
(



+

)
=
10

+
2


5

=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0



(

4
)
=
6

(

1
)
⇒f(−4)=6f(−1)



(

1
)

(

4
)
=

(

1
)
.
6

(

1
)
=
6
[

(

1
)
]
2

0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)] 
2
 ≥0 (đpcm)

b.


(

2
)
=
4


2

+

f(−2)=4a−2b+c


(
3
)
=
9

+
3

+

f(3)=9a+3b+c



(

2
)
+

(
3
)
=
13

+

+
2

=
0
⇒f(−2)+f(3)=13a+b+2c=0



(

2
)
=


(
3
)
⇒f(−2)=−f(3)



(

2
)

(
3
)
=

[

(
3
)
]
2

0
⇒f(−2)f(3)=−[f(3)] 
2
 ≤0 (đpcm

28 tháng 2 2019

Do f(x) nhận 1 là nghiệm nên\(f\left(1\right)=a+b+c=0\)

Do f(x) nhận -1 là nghiệm nên\(f\left(-1\right)=a-b+c=0\)

\(\Rightarrow\left(a+b+c\right)+\left(a-b+c\right)=0\)

\(\Rightarrow2\left(a+c\right)=0\)

\(\Rightarrow a=-c\)

Nên a và c là 2 số đối nhau

 

Tham khảo:

loading...