Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 5:
Theo đề, ta có: f(-3)=0
=>9a+12+6=0
=>9a=-18
hay a=-2
pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe
thực chất phép tính này chưa được thu gọ nó giống như phsp toaasn cấp 1 vậy nó được tách nhánh ra nhưng số chúng vẫn giống nhau nên chỉ cần thu gọn đa thức này vào rồi sau đó thay x = 2018 vô là xong
a)
Có : \(f\left(x\right)=x^6-2019x^5+2019x^4-...-2019x+1\)
\(=x^6-\left(2018+1\right)x^5+\left(2018+1\right)x^4-...-\left(2018+1\right)x+1\)
\(=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+1\)
\(=x^6-\left(x^6+x^5\right)+\left(x^5+x^4\right)-...-\left(x^2+x\right)+1\)
\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+1\)
\(=-x+1\)
- Thay \(x=2018\)vào đa thức \(f\left(x\right)\)ta được:
\(f\left(2018\right)=-2018+1=-2017\)
Vậy \(f\left(2018\right)=-2017\)
Ta có: \(A\left(0\right)=a\cdot0^2+b\cdot0+c=4\Rightarrow c=4\)
Theo đề bài đa thức \(A\left(x\right)\) có nghiệm bằng 1 và 2 nên:
\(\Rightarrow\left\{{}\begin{matrix}a.1^2+b\cdot1+c=0\\a\cdot2^2+b\cdot2+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a+b+4=0\\4a+2b+4=0\end{matrix}\right.\)
\(\Rightarrow a=2,b=-6,c=4\)
Vậy a=2,b=-6,c=4