Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Q ( x ) = [ P ( x ) + Q ( x ) ] - P ( x ) = ( x5 - 2x2 + 1 ) - ( x4 - 3x2+\(\frac{1}{2}\)- x ) = x5 - 2x2 + 1 - x4 + 3x2 - \(\frac{1}{2}\)+ x
= x5 - x4 - ( 2x2 - 3x2 ) + x + \(\frac{1}{2}\)
= x5 - x4 + x2 + x + \(\frac{1}{2}\)
Ta có: P(x) = x4 - 3x2 + \(\frac{1}{2}\) – x.
a) Vì P(x) + Q(x) = x5 – 2x2 + 1 nên
Q(x) = x5 – 2x2 + 1 - P(x)
Q(x) = x5 – 2x2 + 1 - x4 + 3x2 - \(\frac{1}{2}\) + x
Q(x) = x5 - x4 + x2 + x + \(\frac{1}{2}\)
b) Vì P(x) - R(x) = x3 nên
R(x) = x4 - 3x2 + \(\frac{1}{2}\) – x - x3
hay R(x) = x4 - x3 - 3x2 – x + \(\frac{1}{2}\)
Ta có: P(x) = x4 - 3x2 + 1212 – x.
a) Vì P(x) + Q(x) = x5 – 2x2 + 1 nên
Q(x) = x5 – 2x2 + 1 - P(x)
Q(x) = x5 – 2x2 + 1 - x4 + 3x2 - 1212 + x
Q(x) = x5 - x4 + x2 + x + 1212
b) Vì P(x) - R(x) = x3 nên
R(x) = x4 - 3x2 + 1212 – x - x3
hay R(x) = x4 - x3 - 3x2 – x + 1212.
a,R(x)=P(x)+Q(x)=-4x\(^4\)-2x+x\(^2\)+3x\(^3\)+1-2-3x\(^3\)+2x+x\(^5\)+5x\(^4\)
=x\(^5\)+(-4x\(^4\)+5x\(^4\))+(3x\(^3\)-3x\(^3\))+x\(^2\)+(-2x+2x)+(1-2)
=x\(^5\)+x\(^4\)+x\(^2\)-1
R(-1)=(-1)\(^5\)+(-1)\(^4\)+(-1)\(^2\)-1
=0
a>P(x)+Q(x)=(x4+2x3+2x2-x)+(x4-2x3+x+1)
=x4+2x3+2x2-x+x4-2x3+x+1
=(x4+x4)+(2x3 -2x3)+2x2-(x+x)+1
=2x 4+2x2+1
R(x)=2x4+2x2+1
b> Vì 2x4 lớn hơn hoặc bằng 0 với mọi x
2x2lớn hơn hoặc bằng 0 với mọi x
=>2x4+2x2+1 lớn hơn 0 với mọi x
=>R(x) vô nghiệm
nếu đ tik cho mk nha
Bài 1:
Thay x=1 vào đa thức F(x) ta được:
F(1) = 14+2.13-2.12-6.1+5 = 0
=> x=1 là nghiệm của đa thức F(x)
Tương tự ta thế -1; 2; -2 vào đa thức F(x)
Vậy x=1 là nghiệm của đa thức F(x)
Rút gọn:
\(P\left(x\right)=2x^2+4x\)
\(Q\left(x\right)=-x^3+2x^2-x+2\)
Để \(R\left(x\right)-P\left(x\right)-Q\left(x\right)=0\)
<=> \(R\left(x\right)=P\left(x\right)+Q\left(x\right)\)
= \(\left(2x^2+4x\right)+\left(-x^3+2x^2-x+2\right)\)
= \(-x^3+4x^2+3x+2\)
KL: \(R\left(x\right)=-x^3+4x^2+3x+2\)
a)\(Q\left(x\right)=x^5+x^4-x^2-\dfrac{1}{2}-x\)
b)\(R\left(x\right)=x^4+x^3-3x^2+\dfrac{1}{2}-x\)