Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,A(\(x\)) = 13\(x^4\) + 3\(x^2\) + 15\(x\) - 8\(x\) - 7 - 7\(x\) + 7\(x^2\) - 10\(x^4\)
A(\(x\)) = (13\(x^4\) - 10\(x^4\)) + (3\(x^2\) + 7\(x^2\)) + (15\(x\) - 8\(x\) - 7\(x\)) - 7
A(\(x\)) = 3\(x^4\) + 10\(x^2\) + 0 - 7
A(\(x\)) = 3\(x^4\) + 10\(x^2\) - 7
B(\(x\)) = -4\(x^4\) - 10\(x^2\) + 10 + 5\(x^4\) - 3\(x\) - 18 + 30 - 5\(x^2\)
B(\(x\)) = (-4\(x^4\) + 5\(x^4\)) - (10\(x^2\) + 5\(x^2\)) - 3\(x\) + (10 + 30 - 18)
B(\(x\)) = \(x^4\) - 15\(x^2\) - 3\(x\) + 22
b,C(\(x\)) = A(\(x\)) + B(\(x\)) = 3\(x^4\) + 10\(x^2\) - 7 + \(x^4\) - 15\(x^2\) - 3\(x\) + 22
C(\(x\)) = 4\(x^4\) - (15\(x^2\) - 10\(x^2\)) - 3\(x\) + 22
C(\(x\)) = 4\(x^4\) - 5\(x^2\) - 3\(x\) + 15
c, D(\(x\)) = B(\(x\)) - A(\(x\)) = \(x^4\) - 15\(x^2\) - 3\(x\) + 22 - 3\(x^4\) - 10\(x^2\) + 7
D(\(x\)) = (\(x^4\) - 3\(x^4\)) - (15\(x^2\) + 10\(x^2\)) + (22 + 7)
D(\(x\)) = - 2\(x^4\) - 25\(x^2\) + 29
d, Thay \(x\) = 1 vào C(\(x\)) ta có: C(1) = 4.14 - 5.12 -3.1 + 15 = 11 (xem lại đề bài em nhá)
Ta có:
\(P\left(9\right)-P\left(6\right)=2019\)
\(\Leftrightarrow81a+9b+c-36a-6b-c=2019\)
\(\Leftrightarrow45a+3b=2019\)
Lại có:
\(P\left(10\right)-P\left(7\right)\)
\(=100a+10b+c-49a-7b-c\)
\(=51a+3b\)
\(=\left(45a+3b\right)+6a\)
\(=2019+6a\) là số lẻ vì \(6a\) là số chẵn và \(2019\) lẻ
=> ĐPCM
P/S:Hiện tại chỉ nghĩ ra bài 2
Bạn có nhầm đề không? Nếu chỉ có như vậy thì có vô số đa thức P(x) thỏa mãn với P(x) dạng:
\(P\left(x\right)=x^4+\left(a-3\right)x^3+\left(3-3a\right)x^2+\left(3a-1\right)x-a\)
Với a nguyên bất kì
Bạn có thể thay thử vài giá trị của a và lấy P(x) chia \(\left(x-1\right)^3\) sẽ thấy
Thế x = 0 vào thì ta được f(0) = d mà f(0) nguyên nên d nguyên.
Thế x = 1 và x = - 1 thì ta được
f(1) = a + b + c + d
f(-1) = - a + b - c + d
=> f(1) + f(-1) = 2b + 2d
=> 2b = f(1) + f(-1) - 2d
Vậy 2b là số nguyên
Ta lại có: f(2) = 8a + 4b + 2c + d
=> f(2) - 2f(1) = 6a - 2b + d
=> 6a = f(2) - 2f(1) + 2b - d
Vậy 6a là số nguyên
Thế x = 0 vào thì ta được f(0) = d mà f(0) nguyên nên d nguyên.
Thế x = 1 và x = - 1 thì ta được
f(1) = a + b + c + d
f(-1) = - a + b - c + d
=> f(1) + f(-1) = 2b + 2d
=> 2b = f(1) + f(-1) - 2d
Vậy 2b là số nguyên
Ta lại có: f(2) = 8a + 4b + 2c + d
=> f(2) - 2f(1) = 6a - 2b + d
=> 6a = f(2) - 2f(1) + 2b - d
Vậy 6a là số nguyên