Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=x^3-x^2y+3x^2-xy+y^2-4y+x+2\)
\(=x^3-x^2y+3x^2-\left(xy-y^2+3y\right)-y+x+3-1\)
\(=x^2\left(x-y+3\right)-y\left(x-y+3\right)+\left(x-y+3\right)-1\)
Thay x-y+3=0 vào A
\(A=x^2.0-y.0+0-1=-1\)
b, \(B=x^3-2x^2y+3x^2+xy^2-3xy-2y+2x+4\)
\(=x^3-x^2y-x^2y+3x^2+xy^2-3xy-2y+2x+4\)
\(=x^3-x^2y+3x^2-x^2y+xy^2-3xy+2x-2y+6-2\)
\(=x^2\left(x-y+3\right)-xy\left(x-y+3\right)+2\left(x-y+3\right)-2\)
Thay x-y+3=0 vào B
\(B=x^2.0-xy.0+2.0-2=-2\)
Bài 1:
\(A=\left(x^3.x^3.x^2\right).\left(y.y^4\right).\left(\frac{2}{5}.\frac{-5}{4}\right)\)
\(A=x^8.y^5.\left(-\frac{1}{2}\right)\)
\(B=\left(x^5.x.x^2\right).\left(y^4.y^2.y\right).\left(\frac{-3}{4}.\frac{-8}{9}\right)\)
\(B=x^8.y^7.\frac{2}{3}\)
Bài 2:
\(A=\left(15.x^2.y^3-12.x^2.y^3\right)+\left(11x^3.y^2-8.x^3.y^2\right)+\left(7x^2-12x^2\right)\)
\(A=3.x^2.y^3+2.x^3.y^2-5x^2\)
B tương tự nhé, đáp án là (theo mình)
\(B=\frac{5}{2}.x^5.y+\frac{7}{3}.x.y^4-\frac{1}{4}.x^2.y^3\)
1) \(A=2xy^2+3xy-xy^2+5xy^2+5xy+1\)
a, \(A=2xy^2+3xy-xy^2+5xy^2+5xy+1\)
= \(6xy^2+8xy+1\)
b, giá trị của biểu thức tại x = 1 và y = 2 là:
\(A=6.1.2^2+8.1.2+1=41\)
2) và 3) bạ vt khó hiểu wa
2) đề bài này là tìm b.a.c á bn, ghi đề chưa rõ lắm nên tui cx pó tay
3)
a/ Có: \(4x+9=0\)
\(\Leftrightarrow4x=-9\Rightarrow x=-\dfrac{9}{4}\)
vậy.............
b/ Có: \(-5x+6=0\)
\(\Leftrightarrow-5x=-6\Rightarrow x=\dfrac{6}{5}\)
Vậy....................
c/ có: \(x^2-4=0\)
\(\Leftrightarrow x^2=4\Rightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Vậy ..................
d/ Có: \(9-x^2=0\)
\(\Leftrightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy.............
e/ Có: \(\left(y+2\right)\left(3-y\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\\3-y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y=-2\\y=3\end{matrix}\right.\)
Vậy...............
p/s: bài 3 này thuộc dạng cơ bản nên lần sau nhớ suy nghĩ trc khi đăng câu hỏi
Lời giải:
Nếu $a\neq 0$ thì đa thức $M$ có bậc là $12+3=15\neq 5$ (trái với đề bài)
Nếu $a=0$ thì $M=-2xy+6x^3y^2$ có bậc $3+2=5$ (thỏa mãn)
Vậy $a=0$
---------------------
$N=-3xy^4+6x^3y^7+(a+1)x^3y^7-7xy$
$=-3xy^4+(a+7)x^3y^7-7xy$
Nếu $a+7\neq 0$ thì bậc của $N$ là $3+7=10\neq 5$ (trái đề)
Nếu $a+7=0$ thì $N=-3xy^4-7xy$ có bậc $1+4=5$ (thỏa đề)
Vậy $a+7=0\Leftrightarrow a=-7$
Lời giải:
\(A=-x(\frac{3}{4}x^2y)(\frac{-1}{3}x^3y^2)=(\frac{3}{4}.\frac{-1}{3}).(-x.x^2.x^3)(y.y^2)\)
\(=\frac{-1}{4}.(-x^6).y^3=\frac{1}{4}x^6y^3\)
Bậc của $A$: \(6+3=9\)
a)
\(x^3+x^2y+x^2-xy^2-y^3-y^2+2x+2y+3\\ =\left(x^3+x^2y+x^2\right)-\left(xy^2+y^3+y^2\right)+2x+2y+3\\ =x^2\left(x+y+1\right)-y^2\left(x+y+1\right)+\left(x+y+1\right)+\left(x+y+1\right)+1\\ =\left(x+y+1\right)\left(x^2-y^2\right)+0+0+1\\ =0\left(x^2-y^2\right)+1\\ =0+1=1\)
b)
\(x^4y+x^3y^2+x^3y-x-y\\ =x^3y\left(x+y+1\right)-x-y\\ =x^3y\times0-x-y=0-x-y\\ =-x-y-1+1=-\left(x+y+1\right)+1\\ =-0+1=1\)
(-5x2y + 3xy2 + 7) + (-6x2y + 4xy2 - 5)
= -5x2y + 3xy2 + 7 - 6x2y + 4xy2 - 5
= -11x2y + 7xy2 + 2
(2,4x3 - 10x2y) + (7x2y - 2,4x3 + 3xy2)
= 2,4x3 - 10x2y + 7x2y - 2,4x3 + 3xy2
= -3x2y + 3xy2
Mình sửa lại câu cuối:
(15x2y - 7xy2 - 6y2) + (2x2 - 12x2y + 7xy2)
= 15x2y - 7xy2 - 6y2 + 2x2 - 12x2y + 7xy2
= 3x2y - 6y2 + 2x2
Chúc bn học tốt!
đề bài là j z bạn
Sorry nha! Quên chưa đề câu hỏi!
Tìm a và b nha các bn, lm ơn hãy giúp mk nhé!