K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

Đề bài sai rồi bn. Hình như f(2) đổi thành f(-2) và f(1).f(2) ms đúng

thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d

thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d

thay b= 3a+c vào 2 đa thức trên sẽ đc:

f(1)= 4a+2c+d và f(-2)= 4a+2c+d

=> f(1).f(-2)= ( 4a+2c+d )2

mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z

  vậy f(1).f(-2) là bình phương của một số nguyên

ko tránh khỏi thiếu sót, nếu làm sai ai đó sửa lại nhé. Thắc mắc gì cứ hỏi

_Hết_

29 tháng 3 2018

Đề sai của bạn sai nhé

Hình như f(2) đổi thành f(-2) và f(1).f(2) mới đúng

Thay 1 vào f(x) sẽ đc: f(1) = a+b+c+d

Thay -2 vào f(x) sẽ đc: f(-2) = -8a + 4b -2c + d thay b= 3a+c

Vào 2 đa thức trên sẽ đc: f(1)= 4a+2c+d và f(-2)= 4a+2c+d => f(1).f(-2)= ( 4a+2c+d )\(^2\)

Mà a,b,c,c thuộc Z suy ra biểu thức trên cx thuộc Z  

Vậy f(1).f(-2) là bình phương của một số nguyên 

8 tháng 5 2016

f(1) = a + b +c + d . Mà b = 3a + c nên f(1) = a + 3a + c + c +d = 4a + 2c + d (1)

f(-2) = - 8a + 4b - 2c + d 

Mà b = 3a + c nên f(-2) = - 8a + 12a + 4c - 2c + d = 4a + 2c + d (2)

Từ (1) và (2) => f(1).f(-2) = (4a +2c +d)^2. Mà a, b, c, d thuộc z => 4a + 2c + d là số nguyên

Vậy f(1).f(-2) là bình phương của một số nguyên

11 tháng 5 2016

CẢM ƠN NHIỀU NHA

16 tháng 5 2016

phải là f(x)=ax3+bx2+cx+d nhé bn!
 

16 tháng 5 2016

\(f\left(x\right)=ax^3+bx^2+cx+d\)

Ta có: \(f\left(1\right)=a.1^3+b.1^2+c.1+d=a+b+c+d\left(1\right)\)

\(f\left(-2\right)=a.\left(-2\right)^3+b.\left(-2\right)^2+c.\left(-2\right)+d=-8a+4b-2c+d\left(2\right)\)

Trừ (2) cho (1),vế theo vế:

\(f\left(-2\right)-f\left(1\right)=\left(-8a+4b-2c+d\right)-\left(a+b+c+d\right)\)

\(=-8a+4b-2c+d-a-b-c-d=\left(-8a-a\right)+\left(4b-b\right)+\left(-2c-c\right)+\left(d-d\right)\)

\(=-9a+3b-3c=3.\left(-3a+b-c\right)\)

thiếu đề rồi!