Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ( - 2 )2 + m . ( - 2 ) + 2 = 0 \(\Leftrightarrow\)m = 3
b) f(x) = x2 + 3x + 2
f(x) có tổng bằng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ nên f(x) nhận (-1) làm một nghiệm. Như vậy f(x) có 2 nghiệm là (-2) (Theo câu a) và ( -1) ngoài ra không còn nghiệm nào khác vì đa thức bậc hai có nhiều nhất là 2 nghiệm
Do đó tập hợp các nghiệm của f(x) là S = ( -1; -2 )
a) Theo đề f(x) nhận -2 là nghiệm lấy -2 thay vào x ta có:
\(\left(-2\right)^2-2m+2=0\)
\(\Rightarrow4-2m+2=0\)
\(\Rightarrow6-2m=0\)
\(\Rightarrow2m=6\)
\(\Rightarrow m=3\)
b) Tìm được m ta có: \(f\left(x\right)=x^2+3x+2\)
\(\Rightarrow x^2+3x+2=0\)
\(\Rightarrow x^2+2x+x+2=0\)
\(\Rightarrow x\left(x+2\right)+\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của f(x) là: \(S=\left\{-2;-1\right\}\)
a, Để f(x) nhận 3 là nghiệm thì : \(3^2-3m+15=0\)
\(\Leftrightarrow24-3m=0\)
\(\Leftrightarrow m=8\)
b, Với m = 8 thì \(x^2-8x+15=0\)
\(\Leftrightarrow\left(x-3\right)\left(x-5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=5\end{cases}}\)
Vậy \(S=\left\{3;5\right\}\)
a) Khi x = 2 là nghiệm của đa thức f(x) thì
\(f\left(x\right)=a.2^2-\left(5a-2\right).2+2=0\\ \Leftrightarrow4a-10a+4+2=0\\ \Leftrightarrow-6a=-6\\ \Leftrightarrow a=1\)
Vậy để x = 2 là nghiệm của đa thức f(x) thì a = 1
b) Khi a = 1 để f(x) có nghiệm thì
\(f\left(x\right)=x^2-x.\left(5-2\right)+2=0\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Vậy khi a = 1 thì nghiệm của đa thức f(x) là \(x\in\left\{1;2\right\}\)
a, Thay x = -2, ta có :
f(-2) = (-2 )2 + ( m . -2 ) + 2 = 0
4 + ( -2m ) + 2 = 0
4 - 2m = -2
2m = 6 \(\Rightarrow\)m = 3
b, m = 3 \(\Rightarrow\)f(x) = x2 + 3x + 2
f(x) = 0
\(\Leftrightarrow x^2+3x+2=0\)
\(\Leftrightarrow x^2+2x+x+2=0\)
\(\Leftrightarrow x\left(2+x\right)+\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x=-1\\x=-2\end{cases}}\)
a) (-2)+m.(-2)+2=0 <=> m=3 b) f(x)=x2+3x+2
f(x) có tổng các hệ số bậc chẵn bằng tổng các hệ số bậc lẻ nên f(x) nhận -1 làm một nghiệm.Như vậy f(x) có 2 nghiệm là -2 (theo câu a) và -1 ngoài ra ko còn nghiệm nào khác vì đa thức bậc hai có nhiều nhất là hai nghiệm.Do đó tập hợp các nghiệm của f(x) là S={-1:-2}
1)x2 +2x=0
=>x(x+2)=0
Xét x=0 hoặc x+2=0
x=-2
Vậy x=0 hoặc x=-2
2)x2 +2x-3=0
=x2 -1x+3x-3=0
=x(x-1)+3(x-1)=0
=(x-1)(x-3)=0
Xét x-1=0 hoặc x-3=0
x=1 x=3
Tự KL nha
a) F(x) có nghiệm là 3
=> 3^2 - m.3 + 5 = 0
=> 9 - 3m + 5 = 0
=> 14 - 3m = 0
=> m = 14/3
b) m = 14/3
=> x^2 - 3.14/3 + 5 = 0
=> x^2 - 14 + 5 = 0
=> x^2 - 9 = 0
=> x^2 = 9
=> x = 3 hay x = -3
a) Xét đa thức \(f\left(x\right)=x^2-mx+3\)
\(f\left(3\right)=9-3m+3\)
Vì f(x) nhận x = 3 làm nghiệm nên f(3) = 0
\(\Rightarrow9-3m+3=0\)
\(\Rightarrow3m=12\)
\(\Rightarrow m=4\)
b) Cho \(f\left(x\right)=x^2-4x+3=0\)
\(\Rightarrow x^2-x-3x+3=0\)
\(\Rightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
\(f\left(x\right)=x^2-mx+3\)
Để \(f\left(x\right)\)nhận \(x=3\)là 1 nghiệm thì
\(f\left(3\right)=3^2-3m+3=0\)
\(\Leftrightarrow9-3m+3=0\)
\(\Leftrightarrow12-3m=0\)
\(\Leftrightarrow-3m=-12\)
\(\Leftrightarrow m=4\)
b.Với \(m=4\)thì
\(x^2-4x+3=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}}\)