Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)
và \(f\left(1\right)=-1\Rightarrow a+b=-1\)
Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)
Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)
Suy ra \(ax+b=-x+b\)
Vậy ...
a: \(h\left(x\right)=f\left(x\right)+g\left(x\right)=x^3-x^2+x-24\)
Bậc là 3
b: \(k\left(x\right)=f\left(x\right)-g\left(x\right)=7x^3-9x^2+11x+6\)
\(g\left(\dfrac{3}{2}\right)=-3\cdot\dfrac{27}{8}+4\cdot\dfrac{9}{4}-5\cdot\dfrac{3}{2}-15=-\dfrac{189}{8}\)
\(k\left(\dfrac{3}{2}\right)=7\cdot\dfrac{27}{8}-9\cdot\dfrac{9}{4}+11\cdot\dfrac{3}{2}+6=\dfrac{207}{8}\)
Câu 4:
\(\left(x+1\right)^2\left(y-6\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}\left(x+1\right)^2=0\\y-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\y-6=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0-1=-1\\y=0+6=6\end{matrix}\right.\)
Vậy: biểu thức trên bằng 0 khi có x = -1 hoặc y = 6
Bài 5:
\(P=3x^4+5x^2y^2+2x^4+2y^2\)
\(=3x^2x^2+3x^2y^2+2x^2y^2+2x^4+2y^2\)
\(=3x^2\left(x^2+y^2\right)+2x^2\left(y^2+x^2\right)+2y^2\)
\(=3x^22+2x^22+2y^2\)
\(=6x^2+4x^2+2y^2\)
\(=10x^2+2y^2\)
P/s: Hình như đề câu cuối bị nhầm thì phải!
Sửa đề xíu nha: \(g\left(x\right)=x^2-4.\left(x-2\right)\)
a, Ta có:
\(f\left(2\right)+g\left(\dfrac{-1}{2}\right)=\left(2^2-6.2+4\right)+\left[\left(\dfrac{-1}{2}\right)^2-4.\left(\dfrac{-1}{2}-2\right)\right]\)
\(=\left(4-12+4\right)+\left(\dfrac{1}{4}-4.\dfrac{-5}{2}\right)=-4+\left(\dfrac{1}{4}+10\right)\)
\(=-4+\dfrac{1}{4}+10=6+\dfrac{1}{4}=\dfrac{25}{4}\)
Vậy \(f\left(2\right)+g\left(\dfrac{-1}{2}\right)=\dfrac{25}{4}\)
b, Ta có: \(g\left(x\right)=x^2-4\left(x-2\right)=x^2-4x+8\)
Do đó:
\(f\left(x\right)-g\left(x\right)=\left(x^2-6x+4\right)-\left(x^2-4x+8\right)=x^2-6x+4-x^2+4x-8\)
\(=\left(x^2-x^2\right)-\left(6x-4x\right)+\left(4-8\right)=-2x-4\)
Vậy \(f\left(x\right)-g\left(x\right)=-2x-4\)
c, Ta có:\(h\left(x\right)=\left|f\left(x\right)-g\left(x\right)\right|=\left|-2x-5\right|\)
Mà \(\left|-2x-4\right|\ge0\) với mọi x
Do đó \(h\left(x\right)=\left|-2x-4\right|\) có giá trị nguyên khác 0 và không lớn hơn 1
\(\Leftrightarrow\left|-2x-4\right|=1\Rightarrow\left[{}\begin{matrix}-2x-4=1\\-2x-1=-1\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}-2x=5\\-2x=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-2,5\\x=-1,5\end{matrix}\right.\)
Vậy x=-2,5 hoặc x=-1,5.
a) \(a:b:c=\left(-1\right):3:\left(-4\right)\Rightarrow-a=\dfrac{b}{3}=-\dfrac{c}{4}\)
\(\Rightarrow\left\{{}\begin{matrix}b=-3a\\c=4a\end{matrix}\right.\)
\(\dfrac{1}{2}f\left(2\right)=-2\)
\(\Rightarrow\dfrac{1}{2}.\left(4a+2b+c\right)=-2\)
\(\Rightarrow2a+b+\dfrac{c}{2}=-2\)
\(\Rightarrow2a-3a+\dfrac{4a}{2}=-2\)
\(\Rightarrow a=-2\)
\(\Rightarrow\left\{{}\begin{matrix}b=-3a=-3.\left(-2\right)=6\\c=4a=4.\left(-2\right)=-8\end{matrix}\right.\).
b) \(f\left(x\right)=h\left(x\right)+11x^2+6x+2\)
\(\Rightarrow-2x^2+6x-8=h\left(x\right)+11x^2+6x+2\)
\(\Rightarrow h\left(x\right)=-13x^2-10\)
\(\Rightarrow h\left(x\right)=-\left(13x^2+10\right)\le-\left(13+10\right)=-23\)
\(h\left(x\right)=-23\Leftrightarrow x=0\)
-Vậy \(h\left(x\right)_{max}=-23\)
cảm ơn ạ