Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(0\right)=2010\Rightarrow a.0^2+b.0+c=2010\Rightarrow c=2010\)
\(f\left(1\right)=2011\Rightarrow a.1^2+b.1+c=2011\Rightarrow a+b+c=2011\)
\(\Rightarrow a+b+2010=2011\Rightarrow a+b=1\) (1)
\(f\left(-1\right)=2012\Rightarrow a.\left(-1\right)^2+b.\left(-1\right)+c=2012\)
\(\Rightarrow a-b+c=2012\Rightarrow a-b+2010=2012\)
\(\Rightarrow a-b=2\Rightarrow a=b+2\)
Thế vào (1) \(\Rightarrow b+2+b=1\Rightarrow2b=-1\Rightarrow b=-\dfrac{1}{2}\)
\(\Rightarrow a=b+2=-\dfrac{1}{2}+2=\dfrac{3}{2}\)
\(\Rightarrow f\left(x\right)=\dfrac{3}{2}x^2-\dfrac{1}{2}x+2010\)
\(\Rightarrow f\left(-2\right)=\dfrac{3}{2}.\left(-2\right)^2-\dfrac{1}{2}.\left(-2\right)+2010=2017\)
Bài 1 :
\(P\left(0\right)=d=2017\)
\(P\left(1\right)=a+b+c+d=2\Rightarrow a+b+c=-2015\)(*)
\(P\left(-1\right)=-a+b-c+d=6\Rightarrow-a+b-c=6-2017=-2023\)(**)
\(P\left(2\right)=8a+4b+2c+d=-6033\Rightarrow8a+4b+2c=-8050\)
Lấy (*) + (**) ta được : \(2b=-4038\Rightarrow b=-2019\)
Thay vào (*) ta được \(a+c=4\)(***)
Lại có : \(8a+4b+2c=-8050\Rightarrow8a+2c=-8050+8076=26\)(****)
(***) => \(8a+8c=32\)(*****)
Lấy (****) - (*****) => \(-6c=-6\Rightarrow c=1\Rightarrow a=3\)
Vậy ....
Xét đa thức \(F\left(x\right)=ax^2+bx+c\)
\(F\left(0\right)=c=2016\)
\(F\left(1\right)=a+b+c=2017\Rightarrow a+b=1\) (1)
\(F\left(-1\right)=a-b+c=2018\Rightarrow a-b=2\) (2)
Từ (1), (2)
\(\Rightarrow\hept{\begin{cases}a+b-a+b=-1\\a+b+a-b=3\end{cases}}\Rightarrow\hept{\begin{cases}2b=-1\\2a=3\end{cases}}\Rightarrow\hept{\begin{cases}b=-0,5\\a=1,5\end{cases}}\)
\(\Rightarrow F\left(2\right)=1,5.2^2-0,5.2+2016=2021\)
Vậy \(F\left(2\right)=2021\).
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(2\right)=4a+2b+c=0\)
\(f\left(-2\right)=4a-2b+c=0\)
=> 4a + 2b + c = 4a - 2b + c
=> 2b = -2b
=> 4b = 0
=> b = 0
Từ đề bài , ta có : a = c + 3
Theo f(2) , ta có :
\(f\left(2\right)=4a+0+a+3=0\)
\(f\left(2\right)=5a+3=0\)
\(\Rightarrow a=-\frac{3}{5}\)
Làm tương tự với f(-2) , a cũng giống kết quả
\(\Rightarrow c=a-3=\frac{-3}{5}-3=-\frac{18}{5}\)
Vậy a,b,c lần lượt là ....
Ta có: \(f\left(x\right)=ax^2+bx+c\)
Do a, c là hai số đối nhau nên a + c = 0
\(\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=a+b+c\\f\left(-1\right)=a-b+c\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}f\left(1\right)=b\\f\left(-1\right)=-b\end{matrix}\right.\) ( do a, c là 2 số đối nhau, a + c = 0 )
\(\Rightarrow f\left(1\right).f\left(-1\right)=b.\left(-b\right)=-b^2\)
Mà \(b^2\ge0\Rightarrow-b^2\le0\)
\(\Rightarrow f\left(1\right).f\left(-1\right)\le0\) ( đpcm )
Vậy...
f(0) = a.02 + b. 0 + c = 2016
<=> c =2016
f (1) = a.12 + b.1 + c =2017
<=> a + b =1 (1)
f ( -1 ) = a (-1)2 + b . (-1) +c =2018
<=> a -b =2 (2)
Từ (1),(2) <=> a = 1,5 ; b = -0,5
=> F(x) = 1,5x2 -0,5 x + 2016
F (2) = 1,5 . 22 -0,5 .2 +2016
= 6 -1 +2016 =2021
Ta có:
\(F\left(0\right)=a.0^2+b.0+c=2016\)
\(\Rightarrow c=2016\)
\(F\left(1\right)=a.1^2+b.1+c=2017\)
\(\Rightarrow a+b=1\)
\(F\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=2018\)
\(\Rightarrow a-b=2\)
Vì a + b =1 và a - b = 2 nên \(\Rightarrow a=\frac{3}{2};b=\frac{-1}{2}\)
Vậy \(F\left(2\right)=\frac{3}{2}.2^2-\left(\frac{-1}{2}\right).2+2016=2023\)
thay x = 0 vào f ta có:
f(0) = c mà đa thức tại x = 0 là số nguyên
=> c là số nguyên
thay x = 1 vào f ta có:
f(1) = a + b + c mà đa thức tại x = 1 là số nguyên và c là số nguyên
=> a + b là số nguyên
thay x = -1 vào f ta có:
f(-1) = a - b + mà đa thức tại x = -1 là số nguyên và c là số nguyên
=> a - b là số nguyên
ta có: a + b là số nguyên và a - b là số nguyên
=> (a+b) + (a-b) là số nguyên
=> 2a là số nguyên
Lời giải:
Đặt $2a=m, a+b=n$ với $m,n$ là số nguyên. Khi đó:
$a=\frac{m}{2}; b=n-\frac{m}{2}$.
Khi đó:
$f(x)=\frac{m}{2}x^2+(n-\frac{m}{2})x+c$ với $m,n,c$ là số nguyên.
$f(x)=\frac{m}{2}(x^2-x)+nx+c=\frac{m}{2}x(x-1)+nx+c$
Với $x$ nguyên thì $x(x-1)$ là tích 2 số nguyên liên tiếp nên:
$x(x-1)\vdots 2$
$\Rightarrow \frac{m}{2}x(x-1)\in\mathbb{Z}$
Mà: $nx\in\mathbb{Z}, c\in\mathbb{Z}$ với $x,m,n,c\in\mathbb{Z}$
$\Rightarrow f(x)\in\mathbb{Z}$
Ta có đpcm.
\(f\left(x\right)=ax^2+bx+c\)
Mà: \(f\left(0\right)=2\) thay `x=0` ta có:
\(\Rightarrow f\left(0\right)=a\cdot0^2+b\cdot0+c=2\Rightarrow c=2\)
\(f\left(1\right)=7\) thay `x=1` ta có:
\(\Rightarrow f\left(1\right)=a\cdot1^2+b\cdot1+c=7\Rightarrow a+b+c=7\Rightarrow a+b=5\) (vì `c = 2`)
\(\Rightarrow a=5-b\) (*)
\(f\left(-2\right)=-14\)
\(\Rightarrow f\left(-2\right)=a\cdot\left(-2\right)^2+b\cdot-2+c=-14\)
\(\Rightarrow4a-2b+c=-14\)
\(\Rightarrow4a-2b=-16\) (vì `c=2`)
\(\Rightarrow2a-b=-8\) (**)
Thay (*) vào (**) ta có:
\(2\cdot\left(5-b\right)-b=-8\)
\(\Rightarrow10-2b-b=-8\)
\(\Rightarrow-3b=-18\)
\(\Rightarrow b=6\)
\(\Rightarrow a=5-6=-1\)
Vậy: ...