Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)=ax^2+bx+c\)
\(f\left(2\right)=4a+2b+c=0\)
\(f\left(-2\right)=4a-2b+c=0\)
=> 4a + 2b + c = 4a - 2b + c
=> 2b = -2b
=> 4b = 0
=> b = 0
Từ đề bài , ta có : a = c + 3
Theo f(2) , ta có :
\(f\left(2\right)=4a+0+a+3=0\)
\(f\left(2\right)=5a+3=0\)
\(\Rightarrow a=-\frac{3}{5}\)
Làm tương tự với f(-2) , a cũng giống kết quả
\(\Rightarrow c=a-3=\frac{-3}{5}-3=-\frac{18}{5}\)
Vậy a,b,c lần lượt là ....
f(0) = a.02 + b. 0 + c = 2016
<=> c =2016
f (1) = a.12 + b.1 + c =2017
<=> a + b =1 (1)
f ( -1 ) = a (-1)2 + b . (-1) +c =2018
<=> a -b =2 (2)
Từ (1),(2) <=> a = 1,5 ; b = -0,5
=> F(x) = 1,5x2 -0,5 x + 2016
F (2) = 1,5 . 22 -0,5 .2 +2016
= 6 -1 +2016 =2021
Ta có:
\(F\left(0\right)=a.0^2+b.0+c=2016\)
\(\Rightarrow c=2016\)
\(F\left(1\right)=a.1^2+b.1+c=2017\)
\(\Rightarrow a+b=1\)
\(F\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=2018\)
\(\Rightarrow a-b=2\)
Vì a + b =1 và a - b = 2 nên \(\Rightarrow a=\frac{3}{2};b=\frac{-1}{2}\)
Vậy \(F\left(2\right)=\frac{3}{2}.2^2-\left(\frac{-1}{2}\right).2+2016=2023\)
Ta có : \(f\left(0\right)=c=1\)
\(f\left(1\right)=a+b+c=2\)
\(f\left(2\right)=4a+2b+c=8\)
\(\Rightarrow c=1,a=\frac{5}{2},b=\frac{-3}{2}\)
Vì vậy mà \(f\left(x\right)=\frac{5}{2}x^2-\frac{3}{2}x+1\)
nên \(f\left(-2\right)=\frac{5}{2}.\left(-2\right)^2-\frac{3}{2}.\left(-2\right)+1=14\)
f(x) chia hết cho 3 với mọi x
=> f(0) chia hết cho 3 => C chia hết cho 3
f(1) ; f(-1) chia hết cho 3
=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3
=> f(1) + f(-1) chia hết cho 3 và f(1) - f(-1) chia hết cho 3
f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3
f(1) - f(-1) chia hết cho 3 => 2B chia hết cho 3 => B chia hết cho 3
Vậy.......................
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ
Ta có: \(f\left(0\right)=a.0^2+b.0+c=0+0+c=c\) mà \(f\left(0\right)=1\)\(\Rightarrow c=1\)
\(f\left(1\right)=a.1^2+b.1^2+c=a+b+1\)mà \(f\left(1\right)=2\)\(\Rightarrow a+b+1=2\)\(\Rightarrow a+b=1\)
\(f\left(2\right)=a.2^2+2.b+c=4a+2b+1\)mà \(f\left(2\right)=8\)\(\Rightarrow4a+2b+1=8\)\(\Rightarrow4a+2b=7\)\(\Rightarrow2\left(2a+b\right)=7\)\(\Rightarrow2a+b=3,5\)\(\Rightarrow a+\left(a+b\right)=3,5\)\(\Rightarrow a+1=3,5\)\(\Rightarrow a=2,5\)
Lại có: \(a+b=1\)\(\Rightarrow2,5+b=1\)\(\Rightarrow b=1-2,5=-1,5\)
Ta có: \(f\left(-2\right)=a.\left(-2\right)^2+b.\left(-2\right)+c=2,5.4+\left(-1.5\right).\left(-2\right)+1=10+3+1=14\)
Theo de ta co:
1) a.x2+b.x+c = -2 . Thay x=0 vao bieu thuc nay duoc:
a.02 + b.0 + c = -2
=> 0+0+c = -2
=> c=-2
2) a.x2 + b.x+c = 1 . Thay x=1 vao bieu thuc nay duoc:
a.12 + b.1 + c = 1
=> a+ b + c = 1
Thay c=-2 vua tim o (1) vaobieu thuc tren duoc:
a+b-2 =1 => a+b =3
2) a.x2 +b.x +c = 4 . Thay x=-2 vao bieu thuc nay, ta duoc:
a.(-2)2 + b.(-2) + c = 4
=> 4a - 2b + c = 4
=> 2 ( 2a - b ) +c = 4
Thay: c = -2 tim o (1) vao bieu thuc tren duoc:
2(2a-b) -2 = 4
=> 2a- b = (4+2):2 = 3
Bay gio ta da co 2 yeu to:
a+b = 3 ; 2a-b = 3
Tu a+b = 3 => b = 3-a . Thay b=3-a vao bieeu thuc 2a-b = 3 ta duoc:
2a - (3-a) = 3 => 2a - 3 + a = 3 => 3a = 3+3 =6 => a = 6:3 = 2
Suuy ra: b = 3-2 = 1
Vay: a=2 ; b=1 ; c = -2