K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2022

`Answer:`

`f(x)=ax^2+bx+c`

Do đa thức `f(x)` có hai nghiệm là `x_1=1;x_2=2` 

`=>(x-1)(x-2)=0`

`<=>x^2-2x-x+2=0`

`<=>x^2-3x+2=0`

Mà `f(x)=ax^2+bx+c`

Đồng nhất hệ số ta được \(\hept{\begin{cases}a=1\\b=-3\\c=2\end{cases}}\)

26 tháng 4 2017

cái nãy sai cái này mói đúng nè nha user imageJiyoen Phạm

ta có \(f\left(x_1\right)=1^2+a.1+b=1\Rightarrow1+a+b=1\Rightarrow a+b=0\)

\(f\left(x_2\right)=2^2+a.2+b=2\Rightarrow4+2a+b=2\Rightarrow2a+b=-2\)

Ta có (2a+b)-(a+b)= -2-0

Cái này mới đúng nè nha

=> 2a+b-a-b= -2

=> a=-2

Thay a= -2 vào biểu thức a+b=0 ta được -2+b=0 => b=2

Vậy a=-2 ; b=2

26 tháng 4 2017

ta có

\(f\left(x_1\right)=1^2+a.1+b=1\Rightarrow a+b=1\) (1)

\(f\left(x_2\right)=2^2+a.2+b=2\Rightarrow4+2a+b=2\Rightarrow2a+b=-2\) (2)

Từ 1 và 2 suy ra (2a+b)-(a+b)=-3\(\Rightarrow2a+b-a-b=-3\)

\(\Rightarrow a=-3\)

thay a=-3 vào 1 ta được -3+b=1\(\Rightarrow b=1-\left(-3\right)=4\)

Vậy a=-3 ; b=4

NM
3 tháng 5 2021

ta có Do x=1 và x=-1 là nghiệm của đa thức nên

\(\hept{\begin{cases}f\left(1\right)=0\\f\left(-1\right)=0\end{cases}\Leftrightarrow\hept{\begin{cases}a+b-1=0\\a-b-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}a=2\\b=-1\end{cases}}}}\)

Vậy a=2 và b=-1