K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(f\left(x\right)=2x^3-x^5+3x^4+x^2-\dfrac{1}{2}x^3-2x^2-x^4+1\)

\(=x^3\left(2-\dfrac{1}{2}\right)-x^5+x^4\left(3-1\right)+\left(x^2-2x^2\right)+1\)

\(=-x^5+2x^4+\dfrac{3}{2}x^3-x^2+1\)

b: Hệ số của x^5 là -1

Hệ số của x^4 là 2

Hệ số của x^3 là 3/2

Hệ số của x^2 là -1

Hệ số của 1 là 0

Bậc là 5

c: \(f\left(1\right)=-1+2+\dfrac{3}{2}-1+1=1+\dfrac{3}{2}=\dfrac{5}{2}\)

\(f\left(-1\right)=-\left(-1\right)^5+2\cdot\left(-1\right)^4+\dfrac{3}{2}\cdot\left(-1\right)-\left(-1\right)^2+1\)

\(=1+2-\dfrac{3}{2}-1+1\)

\(=3-\dfrac{3}{2}=\dfrac{3}{2}\)

10 tháng 4 2020

dsssws

Sửa đề: \(P=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\)

Ta có: \(P=3x^3+x^2+4x^4-x-3x^3+5x^4+x^2-6\)

\(=9x^4+2x^2-x-6\)

Ta có: \(Q\left(x\right)=2x^3-x^4-\dfrac{1}{2}x^2-3+\dfrac{3}{4}x-\dfrac{1}{3}x^2+x^4-\dfrac{7}{4}x\)

\(=2x^3-\dfrac{5}{6}x^2-x-3\)

a: \(C\left(x\right)=x^3+3x^2-x+6\)

\(D\left(x\right)=-x^3-2x^2+2x-6\)

b: Bậc của C(x) là 3

Hệ số tự do của D(x) là -6

c: \(C\left(2\right)=8+3\cdot4-2+6=20-2+6=24\)

d: \(C\left(x\right)+D\left(x\right)=x^2+x\)

a. C(x)=x3+3x2−x+6

D(x)=−x3−2x2+2x−6

b. Bậc của C(x) là 3

Hệ số tự do của D(x) là -6

c. C(2)=8+3⋅4−2+6=20−2+6=24

d. 

a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9

g(x)=x^5+7x^4+2x^3+2x^2-3x-9

b: H(x)=-x^5-7x^4-2x^3+x^2+4x+9+x^5+7x^4+2x^3+2x^2-3x-9

=3x^2+x

c: H(x)=0

=>x(3x+1)=0

=>x=0 hoặc x=-1/3

22 tháng 6 2017

Trước hết, ta rút gọn các đa thức:

- Q(x) = 4x3 – 2x + 5x2 - 2x3 + 1 - 2x3

Q(x) = (4x3- 2x3- 2x3) – 2x + 5x2 + 1

Q(x) = 0 – 2x + 5x2 + 1

Q(x) = – 2x + 5x2 + 1

- R(x) = - x2 + 2x4 + 2x - 3x4 – 10 + x4

R(x) = - x2 + (2x4- 3x4+ x4) + 2x – 10

R(x) = - x2 + 0 + 2x – 10

R(x) = - x2 + 2x – 10

Sắp xếp các hạng tử của đa thức sau theo lũy thừa giảm dần của biến ta có:

Q(x) = 5x2 – 2x + 1

R(x) = - x2 + 2x – 10

`@` `\text {Ans}`

`\downarrow`

`a)`

\(P(x) = 5x^3 + 3 - 3x^2 + x^4 - 2x - 2 + 2x^2 + x\)

`= x^4 + 5x^3 + (-3x^2 + 2x^2) + (-2x+x) + (3-2)`

`= x^4 + 5x^3 - x^2 - x + 1`

\(Q(x) = 2x^4 + x^2 + 2x + 2 - 3x^2 - 5x + 2x^3 - x^4\)

`= (2x^4 - x^4) + 2x^3 + (x^2 - 3x^2) + (2x-5x) + 2`

`= x^4 + 2x^3 - 2x^2 - 3x +2`

`b)`

`P(x)+Q(x) = (x^4 + 5x^3 - x^2 - x + 1) + (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 + x^4 + 2x^3 - 2x^2 - 3x +2`

`= (x^4+x^4)+(5x^3 + 2x^3) + (-x^2 - 2x^2) + (-x-3x) + (1+2)`

`= 2x^4 + 7x^3 - 3x^2 - 4x + 3`

`P(x)-Q(x)=(x^4 + 5x^3 - x^2 - x + 1) - (x^4 + 2x^3 - 2x^2 - 3x +2)`

`= x^4 + 5x^3 - x^2 - x + 1 - x^4 - 2x^3 + 2x^2 + 3x -2`

`= (x^4 - x^4) + (5x^3 - 2x^3) + (-x^2+2x^2)+(-x+3x)+(1-2)`

`= 3x^3 + x^2 + 2x - 1`

`Q(x)-P(x) = (x^4 + 2x^3 - 2x^2 - 3x +2)-(x^4 + 5x^3 - x^2 - x + 1)`

`= x^4 + 2x^3 - 2x^2 - 3x +2-x^4 - 5x^3 + x^2 + x - 1`

`= (x^4-x^4)+(2x^3 - 5x^3)+(-2x^2+x^2)+(-3x+x)+(2-1)`

`= -3x^3 - x^2 - 2x + 1`

`@` `\text {Kaizuu lv u.}`

a: \(A\left(x\right)=9-x^5+4x-2x^3+x^2-7x^4\)

\(=-x^5-7x^4-2x^3+x^2+4x+9\)

\(B\left(x\right)=x^5-9+2x^2+7x^4+2x^3-3x\)

\(=x^5+7x^4+2x^3+2x^2-3x-9\)

b: A(x)+B(x)

\(=-x^5-7x^4-2x^3+x^2+4x+9+x^5+7x^4+2x^3+2x^2-3x-9\)

\(=3x^2+x\)

A(x)-B(x)

\(=-x^5-7x^4-2x^3+x^2+4x+9-x^5-7x^4-2x^3-2x^2+3x+9\)

\(=-2x^5-14x^4-4x^3-x^2+7x+18\)

a: f(x)=-x^5-7x^4-2x^3+x^2+4x+9

g(x)=x^5+7x^4+2x^3+2x^2-3x-9

b: h(x)=3x^2+x

c: h(x)=0

=>x=0; x=-1/3