Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giao luu vấn đề mới
x=1, -2 là nghiệm
\(\hept{\begin{cases}a-\left(a+1\right)-\left(2b+1\right)+3b=0\\-8a-2\left(a+1\right)+2\left(2b+1\right)+3b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}b=2\\-10a+7b=0\Rightarrow a=\frac{14}{10}=\frac{7}{5}\end{cases}}\)
2/ Ta phân tích
ax3 + bx2 + c = (x + 2)[ax2 + (b - 2a)x - 2(b - 2a)] + c + 4(b - 2a) = (x2 - 1)(ax + b) + ax + b + c
Từ đó kết hợp với đề bài ta có hệ
\(\hept{\begin{cases}c+4\left(b-2a\right)=0\\a=1\\b+c=5\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=1\\b=1\\c=4\end{cases}}\)
Ta có A = (x + y)3 + z3 + kxyz - 3xy(x + y)
= (x + y + z)[(x + y)2 - (x + y)z + z2] + xy(kz - 3x - 3y)
Nhìn vào cái này ta dễ thấy là để A chia hết cho x + y + z thì k = - 3
\(P\left(x\right)=\left(x^2+2\right)\left(x^2-2x+5\right)+\left(a+4\right)x+b-12\)
Để \(P\left(x\right)⋮Q\left(x\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+4=0\\b-12=0\end{matrix}\right.\)
P(x)=(x2+2)(x^2−2x+5)+(a+4)x+b−12(a+4)
Để P(x)⋮Q(x)
⇔a+4=0 hoặc b-12=0
Câu 2 : \(f\left(x\right)=x^3-ax^2+bx-a\)
Áp dụng định lý Bezout ta có:
\(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)
\(\Rightarrow1^3-a.1^2+b.1-a=1-a+b-a=0\)
\(\Leftrightarrow1-2a+b=0\)\(\Leftrightarrow2a-b=1\)(1)
\(\Rightarrow3\left(2a-b\right)=3\)\(\Rightarrow6a-3b=3\)(2)
\(f\left(x\right)⋮\left(x-3\right)\)\(\Rightarrow f\left(3\right)=0\)
\(\Rightarrow3^3-a.3^2+3b-a=27-9a+3b-a=0\)
\(\Leftrightarrow27-10a+3b=0\)\(\Leftrightarrow10a-3b=27\)(3)
Từ (2) và (3)
\(\Rightarrow\left(10a-3b\right)-\left(6a-3b\right)=27-3\)
\(\Leftrightarrow10a-3b-6a+3b=24\)
\(\Leftrightarrow4a=24\)\(\Leftrightarrow a=6\)
Thay \(a=6\)vào (1) ta có:
\(2.6-b=1\)\(\Leftrightarrow12-b=1\)\(\Leftrightarrow b=11\)
Vậy \(a=6\)và \(b=11\)
Bạn vào đây xem thử
Câu hỏi của bababa ânnnanana - Toán lớp 8 | Học trực tuyến