Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(g\left(x\right)=0\Leftrightarrow x=-\sqrt{7-4\sqrt{3}}=-\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}-2\)
\(g\left(\sqrt{3}-2\right)=0\Rightarrow f\left(\sqrt{3}-2\right)=0\)
\(\Rightarrow7-4\sqrt{3}-4ab\left(\sqrt{3}-2\right)+2a+3=0\)
\(\Leftrightarrow\sqrt{3}\left(-4-4ab\right)+\left(8ab+2a+10\right)=0\text{ }\left(1\right)\)
Do a, b là các số hữu tỉ nên (1) đúng khi và chỉ khi
\(\int^{-4-4ab=0}_{8ab+2a+10=0}\Leftrightarrow\int^{a=-1}_{b=1}\)
Vậy, \(a=-1;\text{ }b=1.\)
f(x) chia hết cho g(x)
Nếu g(x) =0 hay x = - \(\sqrt{7-4\sqrt{3}}=1-\sqrt{6}\)
=> f( \(1-\sqrt{6}\)) =0
=> \(\left(1-\sqrt{6}\right)^2-4ab\left(1-\sqrt{6}\right)+2a+3=0\)(1)
Cái thứ (2) sử dụng cái gì vậy??? chỉ mình với?
Đặt \(f\left(\sqrt{2}+\sqrt{7}\right)=a,g\left(\sqrt{2}+\sqrt{7}\right)=b\)
Theo định lý Bezout=>\(f\left(x\right)=\left(x-\sqrt{2}-\sqrt{7}\right).h\left(x\right)+a\)(1)
\(g\left(x\right)=\left(x-\sqrt{2}-\sqrt{7}\right).k\left(x\right)+b\)(2)
Theo bài ra: \(\frac{a}{b}=\sqrt{2}=>a=\sqrt{2}b\)
Từ (2)=>\(b=g\left(x\right)-\left(x-\sqrt{2}-\sqrt{7}\right)k\left(x\right)\)
Thay vào (1) ta được: \(f\left(x\right)=\left(x-\sqrt{2}-\sqrt{7}\right).h\left(x\right)+\sqrt{2}.\left[g\left(x\right)-\left(x-\sqrt{2}-\sqrt{7}\right)k\left(x\right)\right]\)
=>\(f\left(x\right)=\left(x-\sqrt{2}-\sqrt{7}\right).\left[h\left(x\right)-\sqrt{2}k\left(x\right)\right]+\sqrt{2}.g\left(x\right)\)
Xét x=1=> \(f\left(1\right)=\left(1-\sqrt{2}-\sqrt{7}\right).\left[h\left(1\right)-\sqrt{2}k\left(1\right)\right]+\sqrt{2}.g\left(1\right)\)
Vì f(1) là số nguyên, \(\left(1-\sqrt{2}-\sqrt{7}\right).\left[h\left(1\right)-\sqrt{2}k\left(1\right)\right]\)và \(\sqrt{2}g\left(x\right)\)là số hữu tỉ
=>Vô lí
Vậy ko có đa thức f(x) và g(x) thoả mãn phương trình
b/ Sửa đề chứng minh: \(\frac{5a-3b+2c}{a-b+c}>1\)
Theo đề bài ta có:
\(\hept{\begin{cases}f\left(-1\right)=a-b+c>0\left(1\right)\\f\left(-2\right)=4a-2b+c>0\left(2\right)\end{cases}}\)
Ta có: \(\frac{5a-3b+2c}{a-b+c}>1\)
\(\Leftrightarrow\frac{4a-2b+c}{a-b+c}>0\)
Mà theo (1) và (2) thì ta thấy cả tử và mẫu của biểu thức đều > 0 nên ta có ĐPCM
TL:
\(a,\sqrt{\left(\sqrt{3}-x\right)^2}=\sqrt{3}-x\)
BT thỏa mãn \(\forall x\)
a) \(\sqrt{\left(\sqrt{3}-x\right)^2}=\left|\sqrt{3}-x\right|\)
Vậy biểu thức có nghĩa với mọi x
b) \(\sqrt{\frac{-3}{2+x}}\)
Biểu thức có nghĩa\(\Leftrightarrow2+x< 0\Leftrightarrow x< -2\)