\(f\left(x\right)\)thỏa mãn:\(\left(x-1\right).f\left(x\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

(x-1) x f(x)=(x+2) x f(x+3)

Thay x=1 : (1-1) x f(1) = (1+2) x f(1+3)

            =>f(4)=0

Thay x=-2 :(-2-1) x f(-2) = (-2+2) x f(-2+3)

           =>f(-2)=0

Thay x=4(thay bang 0 vi f(4)=0).....

Thay x=7 (ket qua o tren)

Thay x=10 kq o tren

 vay 5 nghiem la 1;2;4;7;10

mk chi tom tat thoi nha chuc bn hoc tot

7 tháng 7 2019

Ta có: Với 1=0 thì (1-1).f(1)=(1+2).f(1+3) hay 0=3.f(4) do 3 khác 0 nên f(4)=0 vậy 4 là 1 nghiệm của f(x)

Với x=-2 thì (-2-1).f(-2)=(-2+2).f(-2+3) hay (-3).f(-2)=0 do -3 khác 0 nên f(-2)=0 vậy -2 là 1 nghiệm của f(x)

Với x=4 ta có: (4-1).f(4)=(4+2).f(4+3) suy ra 0=6.f(7) (vì f(4)=0)

do 6 khác 0 nên f(7)=0 hay 7 là 1 nghiệm của f(x)

Với x=7 ta có: (7-1).f(7)=(7+2).f(7+3) suy ra 0=9.f(10) (vì f(7)=0)

do 9 khác 0 nên f(10) bằng 0 hay 10 là 1 nghiệm của f(x)

Với x=10 ta có: (10-1).f(10)=(10+2).f(10+3) suy ra 0=12.f(13) (vì f(10)=0)

do 12 khác 0 nên f(13)=0 hay 13 là 1 nghiệm của f(x)

Vậy 5 nghiệm của f(x) tìm được là: -2;4;7;10;13

7 tháng 7 2019

Không chứng minh tương tự được hả bạn???

Tại sao lại với 1=0?

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

16 tháng 5 2017

thế @Trần Khánh Linh ai cần bạn xin lỗi đâu                                                                                                                                       mà bạn Thái viết nam hỏi học sinh lớp 7 chứ phải lớp 5 đâu mà bạn xía vào làm gì

14 tháng 5 2017

xin lỗi mk mới học lp 5 thôi

8 tháng 3 2017

4. (3/4-81)(3^2/5-81)(3^3/6-81)....(3^6/9-81).....(3^2011/2014-81)

mà 3^6/9-81=0  => (3/4-81)(3^2/5-81)....(3^2011/2014-81)=0

20 tháng 11 2018

Ta có: \(\left(0+1\right).f\left(0\right)+3f\left(1-0\right)=2.0+7\)

\(\Rightarrow f\left(0\right)+3f\left(1\right)=7\Rightarrow3f\left(0\right)+9f\left(1\right)=21\) (1)

\(\left(1+1\right)f\left(1\right)+3f\left(1-1\right)=2.1+7\)

\(\Rightarrow2f\left(1\right)+3f\left(0\right)=9\)(2)

Từ (1) và (2) ta được: \(3f\left(0\right)+9f\left(1\right)-2f\left(1\right)-3f\left(0\right)=21-9\)

\(\Rightarrow7f\left(1\right)=12\Rightarrow f\left(1\right)=\frac{12}{7}\)

Khi đó: \(f\left(0\right)=7-3f\left(1\right)=7-3.\frac{12}{7}=\frac{13}{7}\)