K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2020

vào TKHĐ của mình để xem hình ảnh nhé !

30 tháng 5 2020

đây nhé

27 tháng 7 2021

Cho mình xin lời giải với

17 tháng 4 2022

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

17 tháng 4 2022

ko biết !!!

1 tháng 8 2018

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web

AI CHƠI BANG BANG 2 THÌ TÍCH MÌNH

a(a−x)2+b(b−x)2            (1)

=(a+b)x2−2x(a2+b2)+a3+b3

+) a+b=0⇒pt(1)có một nghiệm⇒|a|=|b|

+) a+b≠0

Xét Δ'=a4+2a2b2+b4−a4−ab3−a3b−b4

=2a2b2−ab3−a3b=ab(a−b)2

PT(1) có 1 nghiệm khi và chỉ khi : Δ'=0⇒a−b=0⇒|a|=|b|

1 tháng 11 2019

Thực hiện khai triển , PT đã cho tương đương với 

\(\left(a+b\right)x^2-2x\left(a^2+b^2\right)+\left(a^3+b^3\right)=0\left(^∗\right)\)

Nếu \(a+b=0\) thì

\(a^2+b^2\ne0\) với mọi a , b \(\ne0\) . PT (*) có nghiệm duy nhất \(x=\frac{a^3+b^3}{2\left(a^2+b^2\right)}\) ( thỏa mãn yêu cầu )

\(a+b=0\Rightarrow a=-b\Rightarrow\left|a\right|=\left|b\right|\left(1\right)\)

Nếu \(a+b\ne0\)

PT (*) là PT bậc 2 ẩn x có nghiệm duy nhất khi mà 

\(\Delta'=\left(a^2+b^2\right)^2-\left(a+b\right)\left(a^3+b^3\right)=0\)

\(\Leftrightarrow2a^2b^2-ab^3-a^3b=0\)

\(\Leftrightarrow-ab\left(a-b\right)^2=0\)

Vì \(a,b\ne0\Rightarrow ab\ne0\)

\(\Rightarrow\left(a-b\right)^2=0\Rightarrow a=b\Rightarrow\left|a\right|=\left|b\right|\left(2\right)\)

Từ (1) và (2) ta có đpcm

Chúc bạn học tốt !!!