Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay \(x=\frac{1}{2}\) vào đa thức B(x) ta có :
\(B\left(\frac{1}{2}\right)=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+.....+\left(\frac{1}{2}\right)^{100}\)
\(\Leftrightarrow2B\left(\frac{1}{2}\right)=2\left(1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+.....+\left(\frac{1}{2}\right)^{100}\right)\)
\(\Leftrightarrow2B\left(\frac{1}{2}\right)=2+1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+......+\left(\frac{1}{2}\right)^{99}\)
Ta có :
\(2B\left(\frac{1}{2}\right)-B\left(\frac{1}{2}\right)=\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{100}}\right)\)
\(\Leftrightarrow B\left(\frac{1}{2}\right)=2-\frac{1}{2^{100}}\)
Vậy tại \(x=\frac{1}{2}\) thì đa thức \(B\left(x\right)\) có giá trị là \(2-\frac{1}{2^{100}}\)
a ) \(A\left(-1\right)=-1+\left(-1\right)^2+\left(-1\right)^3+\left(-1\right)^4+....+\left(-1\right)^{99}+\left(-1\right)^{100}\)
\(=-1+1-1+1-1+1-....-1+1\)
\(=\left(-1+1\right)+\left(-1+1\right)+.....+\left(-1+1\right)\)
\(=0\)
Hay \(x=-1\) là nguyện của A(x) (đpcm )
b ) \(A\left(\frac{1}{2}\right)=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+....+\left(\frac{1}{2}\right)^{100}\)
\(=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+.....+\frac{1}{2^{100}}\)
\(2A\left(\frac{1}{2}\right)=1+\frac{1}{2}+\frac{1}{2^2}+.....+\frac{1}{2^{99}}\)
\(\Rightarrow2A\left(\frac{1}{2}\right)-A\left(\frac{1}{2}\right)=1-\frac{1}{2^{100}}\)
\(\Rightarrow A\left(\frac{1}{2}\right)=\frac{2^{100}-1}{2^{100}}\)
Tại \(x=\frac{1}{2}\) thì A(x) = \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{100}\)
=> 2A(x) = \(1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+.......+\left(\frac{1}{2}\right)^{99}\)
=> 2A(x) - A(x) =\(1-\left(\frac{1}{2}\right)^{100}\)
=> A(x) = \(1-\left(\frac{1}{2}\right)^{100}\)
\(A=x+x^2+x^3+...+x^{100}\)
\(A=x\left(1+x+x^2+...+x^{99}\right)\)
\(A=x\left(1+A-x^{100}\right)\)
\(\left(1-x\right)A=x-x^{101}\)
\(A=\frac{x-x^{101}}{1-x}\)
a) Với x = -1, ta có \(A=\frac{\left(-1\right)-\left(-1\right)101}{2}=0\)
Vậy nên x = -1 là một nghiệm của A(x)
b) Với x = 1/2 thì \(A=\frac{\frac{1}{2}-\left(\frac{1}{2}\right)^{101}}{1-\frac{1}{2}}=\frac{\frac{1}{2}-\frac{1}{2^{101}}}{\frac{1}{2}}=\frac{2^{100}-1}{2^{100}}\)
\(a,f\left(x\right)=x^5-3x^2+7x^4-9x^3+x^2-\frac{1}{4}x\)
\(g\left(x\right)=5x^4-x^5+x^2-2x^3+3x^2-\frac{1}{4}\)
\(f\left(x\right)+g\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}x-\frac{1}{4}\)
\(f\left(x\right)-g\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
b,
\(x^2+x^4+x^6+...+x^{100}\text{ }\text{ tại x=-1}\)
từ 1 đến 100 có 100 chữ số => 2,4,6,..., 100 có 50 chữ số!
nên \(-1^2+-1^4+-1^6+...+-1^{100}=1+1+1+...+1=50\)
\(x=\frac{1}{2}\) => \(B\left(x\right)=B\left(\frac{1}{2}\right)=1+\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{100}\)
\(x\times B\left(x\right)=x+x^2+x^3+x^4+...+x^{100}+x^{101}\)
\(\frac{1}{2}\times B\left(\frac{1}{2}\right)=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}+\left(\frac{1}{2}\right)^{101}\)
\(B\left(\frac{1}{2}\right)-\frac{1}{2}\times B\left(\frac{1}{2}\right)=\frac{1}{2}\times B\left(\frac{1}{2}\right)=1-\left(\frac{1}{2}\right)^{101}\)
\(B\left(x\right)=\frac{1}{2}B\left(x\right)\times2=\left(1-\left(\frac{1}{2}\right)^{101}\right)\times2=2-\left(\frac{1}{2}\right)^{100}\)