K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 11 2018

Chọn D

Số cách chọn 1 tam giác có 3 đỉnh trùng với 3 trong số 18 đỉnh của đa giác đã cho là 

Gọi A là biến cố: “ tam giác được chọn là tam giác cân”.

- TH1: Tam giác được chọn là tam giác đều: có 6 cách.

- TH2: Tam giác được chọn là tam giác cân nhưng không phải tam giác đều:

+ Chọn đỉnh của tam giác cân có 18 cách.

+ Chọn cặp đỉnh còn lại để cùng với đỉnh đã chọn tạo thành  đỉnh của  tam giác cân (không đều) có 7 cách.

Suy ra số cách chọn tam giác cân nhưng không phải tam giác đều là 18.7 = 126 cách.

Vậy 

21 tháng 3 2018

Chọn C

Đa giác đều nội tiếp một đường tròn tâm O. Lấy ngẫu nhiên 3 đỉnh có C 20 3  cách.

Để 3 đỉnh là 3 đỉnh một tam giác vuông không có cạnh nào là cạnh của đa giác đều thực hiện theo các bước:

Lấy một đường kính qua tâm đường tròn có 10 cách ta được 2 đỉnh.

Chọn đỉnh còn lại trong 20 - 2 - 4 = 14 đỉnh (loại đi 2 đỉnh thuộc đường kính và 4 đỉnh gần ngay đường kính đó) cách.

Vậy có tất cả 10.14 = 140 tam giác thoả mãn.

Xác suất cần tính bằng 

10 tháng 5 2018



2 tháng 4 2017

Chọn C

Số cách chọn ra 3 đỉnh tùy ý từ 48 đỉnh của đa giác là 

Gọi A là biến cố “tam giác tạo thành từ ba đỉnh đó là một tam giác nhọn”.

* Tính số tam giác tù

+ Chọn đỉnh thứ nhất có 48 cách chọn.

+ Để tạo thành tam giác tù thì ba đỉnh của tam giác phải thuộc cùng  nửa đường tròn ngoại tiếp tam giác. Trong  đỉnh còn lại sẽ có  đỉnh cùng với đỉnh đã chọn thuộc cùng một nửa đường tròn ngoại tiếp. Nên số tam giác tù tạo thành là  48 C 23 2 (tam giác).

* Tính số tam giác vuông tạo thành

+ Có 24 đường chéo đi qua tâm đường tròn ngoại tiếp tam giác.

+ Mỗi đường chéo trên cùng với 46 đỉnh còn lại tạ thành 46 tam giác vuông. Nên số tam giác vuông tạo thành là  24.46 = 1104(tam giác).

Do đó: 

12 tháng 6 2019

Đáp án A

Chọn ngẫu nhiên 4 đỉnh trong 20 đỉnh có  C 20 4 cách =>  n ( Ω ) = 4845

Đa giác 20 cạnh có 10 đường chéo đi qua tâm mà cứ 2 đường chéo đi qua tâm tạo thành một hình chữ nhật. Suy ra số hình chữ nhật tạo từ 10 đường chéo là  C 10 2 = 45 .

Tuy nhiên trong 45 hình chữ nhật này có 5 hình vuông => Số hình chữ nhật cần tính là 40

Vậy xác suất cần tính là  P = 40 n ( Ω ) = 40 4845 = 8 969 .

SỐ tam giác tạo được từ 3 đỉnh là \(C^3_{12}\)

Số tam giác có 3 đỉnh là 3 đỉnh của đa giác và 2 cạnh là cạnh của đa giác: cứ 3 đỉnh liên tiếp cho 1 tam giác thỏa mãn

=>Có 12 tam giác

Số tam giác có 3 đỉnh là đỉnh của đa giác và 1 cạnh là cạnh của đa giác

=>CÓ 8*12=96 tam giác

=>\(P=\dfrac{C^3_{12}-12-12\cdot8}{C^3_{12}}\)

28 tháng 10 2017


14 tháng 10 2018

Đáp án C

Chọn ngẫu nhiên 3 đỉnh trong 20 đỉnh có C 20 3  cách

Gọi X là biến cố “3 đỉnh đó là 3 đỉnh của một tam giác vuông không cân”

Đa giác đều 20 đỉnh có 10 đường chéo xuyên tâm

mà cứ 2 đường chéo được 1 hình chữ nhật và 1 hình chữ nhật được 4 tam giác vuông

số tam giác vuông chọn từ 3 đỉnh trong số 20 đỉnh

4 . C 10 2 = 180

Tuy nhiên chỉ có 180 - 20 = 160

tam giác vuông không cân n(X) = 160

Vậy  P = n ( X ) n ( Ω ) = 8 57

5 tháng 12 2017

Đáp án C

Chọn ngẫu nhiên 3 đỉnh trong 20 đỉnh có  C 20 3 cách =>  n ( Ω ) = 1140 .

Đa giác đều 20 đỉnh có 10 đường chéo đi qua tâm đa giác mà cứ 2 đường chéo tạo thành 1 hình chữ nhật và 1 hình chữ nhật tạo thành 4 tam giác vuông => số tam giác vuông là  4 . C 10 2 = 180 .

Tuy nhiên, trong  C 10 2 hình chữ nhật có 5 hình vuông nên số tam giác vuông cân là 5.4 = 20.

Do đó, số kết quả thuận lợi cho biến cố X là n(X) = 180 – 20 = 160. Vậy  P = n ( X ) n ( Ω ) = 8 57 .

26 tháng 4 2017

Đáp án C

Gọi đường tròn (O) là đường tròn ngoại tiếp đa giác. Xét A là 1 đỉnh bất kỳ của đa giác,kẻ đường kính AA’ thì A’ cũng là 1 đỉnh của đa giác. Đường kính AA’ chia (O) thành 2 nửa đường tròn , với mỗi cách chọn ra 2 điểm B và C là 2 đỉnh của đa giác và cùng thuộc 1 nửa đường tròn, ta đường 1 tam giác tù ABC. Khi đó số cách chọn B và C là: 2 C 49 2  

Đa giác có 100 đỉnh nên số đường chéo là đường kính của đường tròn ngoại tiếp đa giác là 50

Do đó, số cách chọn ra 3 đỉnh để lập thành 1 tam giác tù là: 50 . 2 C 49 2   =   100 C 49 2  

Không gian mẫu: