Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: ΔMNP cân tại M
mà MH là đường cao
nên H là trung điểm của NP
b: NH=PH=2cm
=>\(MH=\sqrt{5^2-2^2}=\sqrt{21}\simeq4,6\left(cm\right)\)
c: Xét ΔMNI và ΔMPI có
MN=MP
góc NMI=góc PMI
MI chung
=>ΔMNI=ΔMPI

a: Xét ΔMHN vuông tại H và ΔMHP vuông tại H có
MN=MP
MH chung
=>ΔMHN=ΔMHP
b: ΔMHN=ΔMHP
=>HN=HP
=>H là trung điểm của NP
c: ΔMNH=ΔMPH
=>góc NMH=góc PMH
=>MH là phân giác của góc NMP

a: Xét ΔNMK co
NE vừa là đường cao, vừa là phân giác
=>ΔNMK cân tại N
=>NM=NK
Xét ΔNMD và ΔNKD có
NM=NK
góc MND=góc KND
ND chung
=>ΔMND=ΔKND
=>góc NKD=90 độ
=>DK vuông góc NP
b: Xét ΔNKM có
MH,NE là đường cao
MH cắt NE tại I
=>I là trực tâm
=>KI vuông góc MN
=>KI//MP

Giả thiết chung:
- Tam giác MNP cân tại M ⇒ \(M N = M P\)
- \(M H \bot N P\), H ∈ NP ⇒ MH là đường cao từ M xuống đáy NP
- \(H I \bot M N\) tại I, và \(H K \bot M P\) tại K.
🔷 Câu a): Chứng minh \(\triangle M H N = \triangle M H P\)
Xét hai tam giác vuông MHN và MHP:
Ta có:
- \(M H\) chung (cạnh huyền trong hai tam giác vuông)
- \(\angle M H N = \angle M H P = 90^{\circ}\) (do \(M H \bot N P\))
- \(M N = M P\) (do tam giác MNP cân tại M)
→ Hai tam giác vuông có:
- Cạnh huyền bằng nhau: \(M N = M P\)
- Cạnh góc vuông chung: \(M H\)
⇒ \(\triangle M H N = \triangle M H P\) (theo trường hợp c.g.c – cạnh huyền – góc vuông – cạnh góc vuông)
✅ ĐPCM
🔷 Câu b): Từ điểm H kẻ \(H I \bot M N\), \(H K \bot M P\)
Đây là bước kẻ hình:
- Gọi I là chân đường vuông góc từ H đến MN ⇒ \(H I \bot M N\)
- Gọi K là chân đường vuông góc từ H đến MP ⇒ \(H K \bot M P\)
Không cần chứng minh, chỉ cần ghi thao tác kẻ hình:
✅ Đã kẻ xong \(H I \bot M N\), \(H K \bot M P\).
🔷 Câu c): Chứng minh tam giác MIK là tam giác cân
Ta cần chứng minh: \(M I = M K\)
Ý tưởng:
Ta sẽ sử dụng tính chất đối xứng của tam giác cân và kết quả từ câu a.
Phân tích và chứng minh:
- Từ câu a: \(\triangle M H N = \triangle M H P\) ⇒ \(\angle M H N = \angle M H P\), và do đối xứng, HI = HK.
- Trong hai tam giác vuông \(\triangle H I K\) và \(\triangle H K I\), ta thấy:
- \(H I = H K\) (do đối xứng)
- \(\angle I H N = \angle K H P = 90^{\circ}\)
- \(H\) là chung
⇒ Hai tam giác \(\triangle H M I\) và \(\triangle H M K\) bằng nhau
⇒ Suy ra: \(M I = M K\)
✅ Kết luận:
Tam giác \(M I K\) có \(M I = M K\) ⇒ là tam giác cân tại M
✅ ĐPCM

Xét ΔMNK có
MH vừa là đường cao, vừa là trung tuyến
=>ΔMNK cân tại M

Đề cs sai k bạn ???
+) Xét \(\Delta\)MNP vuông tại M
\(\Rightarrow NP^2=MN^2+MP^2\) ( đính lsi Py-ta-go)
\(\Rightarrow NP^2=10^2+10^2\)
\(\Rightarrow NP^2=100+100=200\)
\(\Rightarrow NP=\sqrt{200}\) ( cm) ( do NP > 0 )
Bạn xem lại đề đi nhé. Kiên nè
Cho Δ MNP cân tại M. Kẻ MH ⊥ NP (H ∈ NP) a, Chứng minh Δ MHN = Δ MHP. Từ đó suy ra H là trung điểm của NP. b, Kẻ HD ⊥ MN (D ∈ MN), HE ⊥ MP (E ∈ MP). Chứng minh tam giác HDE là tam giác cân c, Chứng minh DE ⊥ MH d,chứng minh de,pd và mh cùng đi qua 1 điểm