K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2020

Bạn xem lại đề đi nhé. Kiên nè

6 tháng 2 2020

Cho Δ MNP cân tại M. Kẻ MH ⊥ NP (H ∈ NP) a, Chứng minh Δ MHN = Δ MHP. Từ đó suy ra H là trung điểm của NP. b, Kẻ HD ⊥ MN (D ∈ MN), HE ⊥ MP (E ∈ MP). Chứng minh tam giác HDE là tam giác cân c, Chứng minh DE ⊥ MH d,chứng minh de,pd và mh cùng đi qua 1 điểm

a: ΔMNP cân tại M

mà MH là đường cao

nên H là trung điểm của NP

b: NH=PH=2cm

=>\(MH=\sqrt{5^2-2^2}=\sqrt{21}\simeq4,6\left(cm\right)\)

c: Xét ΔMNI và ΔMPI có

MN=MP

góc NMI=góc PMI

MI chung

=>ΔMNI=ΔMPI

a: Xét ΔMHN vuông tại H và ΔMHP vuông tại H có

MN=MP

MH chung

=>ΔMHN=ΔMHP

b: ΔMHN=ΔMHP

=>HN=HP

=>H là trung điểm của NP

c: ΔMNH=ΔMPH

=>góc NMH=góc PMH

=>MH là phân giác của góc NMP

 

13 tháng 4 2020

Bài 1 :

Vì mình kh pk CTV nên hình không lên đây được , bạn vào thống kê hỏi đáp của mình xem nhé

#hoc_tot#

:>>>

13 tháng 4 2020

Hình đó nha bạn

Vào TKHĐ của mình là thấy nhé

#hoc_tot#

:>>>

28 tháng 3 2022

có M

28 tháng 3 2022

chưa hỉu cái đề lắm

a: Xét ΔNMK co

NE vừa là đường cao, vừa là phân giác

=>ΔNMK cân tại N

=>NM=NK

Xét ΔNMD và ΔNKD có

NM=NK

góc MND=góc KND

ND chung

=>ΔMND=ΔKND

=>góc NKD=90 độ

=>DK vuông góc NP

b: Xét ΔNKM có

MH,NE là đường cao

MH cắt NE tại I

=>I là trực tâm

=>KI vuông góc MN

=>KI//MP

18 tháng 5

Giả thiết chung:

  • Tam giác MNP cân tại M\(M N = M P\)
  • \(M H \bot N P\), H ∈ NP ⇒ MH là đường cao từ M xuống đáy NP
  • \(H I \bot M N\) tại I, và \(H K \bot M P\) tại K.

🔷 Câu a): Chứng minh \(\triangle M H N = \triangle M H P\)

Xét hai tam giác vuông MHN và MHP:

Ta có:

  • \(M H\) chung (cạnh huyền trong hai tam giác vuông)
  • \(\angle M H N = \angle M H P = 90^{\circ}\) (do \(M H \bot N P\))
  • \(M N = M P\) (do tam giác MNP cân tại M)

→ Hai tam giác vuông có:

  • Cạnh huyền bằng nhau: \(M N = M P\)
  • Cạnh góc vuông chung: \(M H\)

\(\triangle M H N = \triangle M H P\) (theo trường hợp c.g.c – cạnh huyền – góc vuông – cạnh góc vuông)

ĐPCM


🔷 Câu b): Từ điểm H kẻ \(H I \bot M N\), \(H K \bot M P\)

Đây là bước kẻ hình:

  • Gọi I là chân đường vuông góc từ H đến MN ⇒ \(H I \bot M N\)
  • Gọi K là chân đường vuông góc từ H đến MP ⇒ \(H K \bot M P\)

Không cần chứng minh, chỉ cần ghi thao tác kẻ hình:

Đã kẻ xong \(H I \bot M N\), \(H K \bot M P\).


🔷 Câu c): Chứng minh tam giác MIK là tam giác cân

Ta cần chứng minh: \(M I = M K\)

Ý tưởng:

Ta sẽ sử dụng tính chất đối xứng của tam giác cân và kết quả từ câu a.


Phân tích và chứng minh:

  • Từ câu a: \(\triangle M H N = \triangle M H P\)\(\angle M H N = \angle M H P\), và do đối xứng, HI = HK.
  • Trong hai tam giác vuông \(\triangle H I K\)\(\triangle H K I\), ta thấy:
    • \(H I = H K\) (do đối xứng)
    • \(\angle I H N = \angle K H P = 90^{\circ}\)
    • \(H\) là chung

⇒ Hai tam giác \(\triangle H M I\)\(\triangle H M K\) bằng nhau

⇒ Suy ra: \(M I = M K\)


Kết luận:

Tam giác \(M I K\)\(M I = M K\)là tam giác cân tại M

ĐPCM

Xét ΔMNK có

MH vừa là đường cao, vừa là trung tuyến

=>ΔMNK cân tại M

Đề cs sai k  bạn ???

+) Xét \(\Delta\)MNP vuông tại M 

\(\Rightarrow NP^2=MN^2+MP^2\) ( đính lsi Py-ta-go)

\(\Rightarrow NP^2=10^2+10^2\)

\(\Rightarrow NP^2=100+100=200\)

\(\Rightarrow NP=\sqrt{200}\) ( cm) ( do NP > 0 )