K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2018

ko biet

a: Xét ΔABD và ΔAED có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

b: Ta có: ΔABD=ΔAED

nên DB=DE và \(\widehat{ABD}=\widehat{AED}=90^0\)

hay DE\(\perp\)AC

c: Xét ΔDBF vuông tại B và ΔDEC vuông tại E có

DB=DE

BF=EC

Do đó: ΔDBF=ΔDEC

Suy ra: \(\widehat{BDF}=\widehat{EDC}\)

=>\(\widehat{BDF}+\widehat{BDE}=180^0\)

hay F,D,E thẳng hàng

a: Xét ΔADB và ΔADE có

AB=AE

\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔABD=ΔAED

b: Ta có: ΔABD=ΔAED

nên DB=DE và \(\widehat{ABD}=\widehat{AED}=90^0\)

hay DE\(\perp\)AC

c: Xét ΔBDF vuông tại B và ΔEDC vuông tại E có

DB=DE

BF=EC

Do đó: ΔBDF=ΔEDC

Suy ra: \(\widehat{BDF}=\widehat{EDC}\)

=>\(\widehat{BDF}+\widehat{BDE}=180^0\)

hay F,D,E thẳng hàng

27 tháng 12 2016

Bài 1( Hình mik đăng lên trước nha, mới lại phần bn nối điểm K với B, điểm F với D hộ mik nhé)

a) Xét tam giác EFA và tam giác CAB, có:

AE = AC ( giả thiết)

AF = AB (giả thiết)

Góc EAF = góc BAC (2 góc đối đỉnh)

=> ΔEAF = ΔCAB (c.g.c)

b) Vì ΔEFA = ΔCAB (Theo a)

=> Góc ABC = Góc EFA (cặp góc tương ứng)

=> EF = BC (cặp cạnh tương ứng) (1)

Mà EK = KF = 1/2 EF (2)

BD = DC = 1/2 BC (3)

Từ (1), (2) và (3)

=> KF = BD

Xét ΔKFB và ΔFBD, có

Cạnh BF chung

KF = BD (chứng minh trên)

Góc EFB = Góc ABC (chứng minh trên)

=> ΔKFB =ΔDBF (c.g.c)

=> KB = FD (cặp cạnh tương ứng)

18 tháng 2 2017

TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ

\(AB^2+BC^2=AC^2\)

=>\(8^2+15^2=289=>AC^{ }=17\)

=>AC=17 CM

A B C E

5 tháng 8 2018

sai de

5 tháng 8 2018

Mình sửa lại câu hỏi của mình rồi nha bạn Hải . Bạn làm cả 2 bài giúp mình nhaaaaa

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.a. Chứng minh: ∆BAD = ∆BEDb. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DEc. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC2.Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. a. Chứng minh ∆ABD = Đồng ý∆EBD và...
Đọc tiếp

1. Cho ∆ABC vuông tại A (AB < AC). Vẽ tia BD là phân giác của góc ABC (D ∈ AC). Trên cạnh BC lấy điểm E sao cho BA = BE.

a. Chứng minh: ∆BAD = ∆BED

b. Từ A kẻ AH ⊥ BC tại H. Chứng minh: AH // DE

c. Trên tia đối của tia ED lấy điểm K sao cho ED = EK. Chứng minh: Góc EKC = góc ABC

2.

Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Phân giác góc B cắt AC tại D. 

a. Chứng minh ∆ABD = Đồng ý∆EBD và DE ⊥ BC

b. Gọi K là giao điểm của tia ED và tia BA. Chứng minh AK = EC.

c. Gọi M là trung điểm của KC. Chứng minh ba điểm B, D, M thẳng hàng.

3.

Cho tam giác ABC vuông tại A (AB < AC). Trên cạnh BC lấy điểm M sao cho BA = BM. Gọi E là trung điểm AM.

a.Chứng minh: ∆ABE = ∆MBE.

b. Gọi K là giao điểm BE và AC. Chứng minh: KM ⊥ BC,

c. Qua M vẽ đường thẳng song song với AC cắt BK tại F. Trên đoạn thẳng KC lấy điểm Q sao cho KQ = MF. Chứng minh: góc ABK = QMC

4

 

Cho tam giác ABC có AB = AC, lấy M là trung điểm của BC.

a) Chứng minh ∆ABM = ∆ACM

b) Kẻ ME ⊥ AB tại Em kẻ MF ⊥ AC tại F. Chứng minh AE = AF.

c) Gọi K là trung điểm của EF. Chứng minh ba điểm A, K, M thẳng hàng

d) Từ C kẻ đương thẳng song song với AM cắt tia BA tại D. Chứng minh A là trung điểm của BD.

2

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng

28 tháng 4 2023

4:

a: Xet ΔAMB và ΔAMC có

AM chung

MB=MC

AB=AC
=>ΔAMB=ΔAMC

b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

góc EAM=góc FAM

=>ΔAEM=ΔAFM

=>AE=AF
c: AE=AF
ME=MF

=>AM là trung trực của EF

mà K nằm trên trung trực của EF

nên A,M,K thẳng hàng