K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2020

a, Vì G là trọng tâm của △ABC 

\(\Rightarrow AG=\frac{2}{3}AM\) \(\Rightarrow GM=\frac{1}{3}AM\) Mà MD = MG \(\Rightarrow GM+MD=\frac{1}{3}AM+\frac{1}{3}AM\)\(\Rightarrow GD=\frac{2}{3}AM\)

=> AG = GD

=> G là trung điểm của AD

=> CG là trung tuyến của tam giác ACD

b, Xét △BGM và △CDM

Có: GM = DM (gt)

    BMG = CMD (2 góc đối đỉnh)

       BM = CM (gt)

=> △BGM = △CDM (c.g.c)

=> GBM = DCM (2 góc tương ứng)

Mà 2 góc này nằm ở vị trí so le trong

=> BG // CD (dhnb)

22 tháng 7 2022

dhnb là gì ạ

17 tháng 4 2016

A B C M D G N

Xet tam giac ABC ta có

G la trong tâm (gt)

->BG la dương trung tuyến 

mà BG cắt AC tai N (gt)

nên BN là đường trung tuyến

--> N la trung điểm AC

Xét tam giac ANG và tam giac NCD ta có 

ND=NG (gt) ; goc ANG=goc CND (đối đỉnh) ; AN=NC ( N là trung điểm AC)

--< tam giac ANG=tam giac CND (c-g-c)

--> AG=CD ( 2 cạnh tương ứng)

ta có : G là trọng tâm tam giac ABC (gt)

        -> AG=\(\frac{2}{3}AM\)-> \(\frac{AG}{2}=\frac{AM}{3}=\frac{AM-AG}{3-2}=\frac{MG}{1}\)

--> AG=2MG

ma AG -=CD 9cmt)

nên CD=2MG

          

13 tháng 8 2016

a) Xét ΔAMD và ΔCMB có:

       AM=MC(gt)

      \(\widehat{AMB}=\widehat{CMB}\) (đối đỉnh)

      DM=MB(gt)

=> ΔAMD=ΔCMB(c.g.c)

b)Ví ΔAMD = ΔCMB(cmt)

=> \(\widehat{ADM}=\widehat{CBM}\) . Mà hai góc này ở vị trí soletrong

=> AD//BC

c, Xét ΔANE và ΔBNC có:

           EN=NC(gt)

     \(\widehat{ANE}=\widehat{BNC}\) (đối đỉnh)

          AN=BN(gt)

=>ΔANE=ΔBNC(c.g.c)

=>AE=BC                                      (1)

Mà ΔAMD=ΔCMB(cmt)

=>AD=BC                                    (2)

Từ (1)(2) suy ra: AE=AD

=>E là trung điểm của DE

 

13 tháng 8 2016

a/ Xét tam giác AMD và tam giác CMB có:

\(\begin{cases}gcAMD=gcCMB\\AM=MC\\DM=BM\end{cases}\)

=> AMD=CMB

b/

Vì tam giác AMD = tam giác CMD nên góc ADM = góc MBC hay ADB=DBC

Mà vị trí 2 góc trên là so le trong nên AD//BC (ĐPCM)

c/

Xét tam giác ENA và CNB có:

\(\begin{cases}AN=BN\\gcENA=gcCNB\\EN=CN\end{cases}\)

=> tam giác ENA = tam giác CNB

=> EA = BC (1)

Mà tam giác AMD= tam giác CMB nên AD = BC (2)

Từ (1) và(2) ta được : EA=AD 

Hay A là trung điểm của ED. (ĐPCM)

 

 

14 tháng 12 2022

a: Xét ΔAMB và ΔCMD có

MA=MC

góc AMB=góc CMD

MB=MD

Do đó: ΔAMB=ΔCMD
b: ΔAMB=ΔCMD

nên AB=CD và góc MAB=góc MCD

=>AB//CD

c: Xét tứ giác AKBC có

N là trung điểm chung của AB và KC

nên AKBC là hình bình hành

=>AK//BC

Xét tứ giác ABCD có

M là trung điểm chung của AC và BD

nên ABCD là hình bình hành

=>AD//BC

mà AK//BC

nên D,A,K thẳng hàng

a: Xet ΔBMG và ΔCME có

MB=MC

góc BMG=góc CME

MG=ME

=>ΔBMG=ΔCME
b: Xet tứ giác BGCE co

M là trung điểm chung của BC và GE

=>BGCE là hình bình hành

=>BG//CE

c: Xét ΔABE co

AI,BG là trung tuyến

AI cắt BG tại F

=>F là trọng tâm

=>E,F,N thẳng hàng

30 tháng 12 2021

a: Xét ΔABM và ΔACM có

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM