Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D H E
a) Xét ΔABH vÀ ΔDBH có:
BH:cạnh chung
\(\widehat{AHB}=\widehat{DHB}=90^o\)
AH=DH(gt)
=> ΔABH=ΔDBH(c.g.c)
b)Xét ΔAHC và ΔDHC có:
AH=DH(gt)
\(\widehat{AHC}=\widehat{DHC}=90^o\)
HC: cạnh chung
=> ΔAHC=ΔDHC(c.g.c)
=> AC=CD
c) Xét ΔBHD và ΔEHA có:
\(\widehat{BHD}=\widehat{EHA}=90^o\)
DH=AH(gt)
\(\widehat{BDH}=\widehat{EAH}\) ( sole trong do AE//BD)
=> ΔBHD=ΔEHA(g.c.g)
=> BH=EH
=>H là trung điểm của BE
tu ve hinh :
a, xet tamgiac MBA va tamgiac MDC co :
goc BMA = goc DMC (doi dinh)
BM = CM do M la trung diem cua BC (GT)
MA = MD (GT)
=> tamgiac MBA = tamgiac MDC (c - g - c)
=> AB = DC (dn)
tamgiac MBA = tamgiac MDC => goc CDM = goc MAB ma 2 goc nay slt
=> AB // CD (dh)
b, co tamgiac ABC vuong tai A => AB | AC (dn) ; AB // DC (cau a)
=> AC | DC (dl) => tamgiac ACD vuong tai C (dn)
tamgiac MBA = tamgiac MDC => AB = CD (dn)
goc BAC = goc DCA = 90o do tamgiac ABC vuong tai A va tamgiac DCA vuong tai C
xet tamgiac ACB va tamgiac CAD co AC chung
=> tamgiac ACB = tamgiac CAD (2cgv)
=> BC = AD (dn)
M la trung diem cua BC => M la trung diem cua AD => AM = AD/2 (tc)
=> AM = BC/2
a: Xét ΔABM có
AC là đường trung tuyến
AC=MB/2
Do đó: ΔABM vuông tại A
b: Xét ΔMCN và ΔNAP có
MC=NA
\(\widehat{MCN}=\widehat{NAP}\)
CN=AP
Do đó:ΔMCN=ΔNAP
Suy ra: MN=NP
Cm tương tự, ta được: ΔNAP=ΔPBM
Suy ra: NP=PM
hay MN=NP=PM
=>ΔMNP đều
E D C B H K x M N A
a) Xét \(\Delta BEA\) và \(\Delta DCA\) có:
AE = AC (gt)
\(\widehat{BAE}=\widehat{DAC}\) (đối đỉnh)
AB = AD (gt)
\(\Rightarrow\Delta BEA=\Delta DCA\) (c.g.c)
\(\Rightarrow BE=CD\) (2 cạnh t/ư)
b) Ta có: \(BM=\frac{1}{2}BE\) (M là tđ)
\(DN=\frac{1}{2}CD\) (N là tđ)
mà BE = CD \(\Rightarrow BM=DN\)
Vì \(\Delta BEA=\Delta DCA\) (câu a)
\(\Rightarrow\widehat{EBA}=\widehat{CDA}\) (so le trong)
hay \(\widehat{MBA}=\widehat{NDA}\)
Xét \(\Delta ABM\) và \(\Delta ADN\) có:
AB = AD (gt)
\(\widehat{MBA}=\widehat{NDA}\) (c/m trên)
BM = DN (c/m trên)
\(\Rightarrow\Delta ABM=\Delta ADN\left(c.g.c\right)\)
\(\Rightarrow\widehat{BAM}=\widehat{DAN}\) (2 góc t/ư)
mà \(\widehat{DAN}+\widehat{NAB}=180^o\) (kề bù)
\(\Rightarrow\widehat{BAM}+\widehat{NAB}=180^o\)
\(\Rightarrow M,A,N\) thẳng hàng.
a. Xét tam giác ABM và tam giác DCM có:
+, BM = MC ( AM là đường trung tuyến của tam giác ABC )
+, Góc AMB = góc DMC ( 2 góc đối đỉnh )
+, AM = MD ( gt )
=> tam giác ABM = tam giác DCM ( c.g.c )
=> AB = CD ( 2 cạnh tương ứng )
=> góc BAM = góc CDM ( 2 góc tương ứng )
Mà 2 góc này ở vị trí so le trong
=> AB // CD ( đpcm )
a/ Xét tg ABM và tg ACM có
AB = AC ( gt)
BM = CM ( gt)
AM chung
=> tg ABM = tg ACM (ccc)
b/ ( Trên tia đối của tia MA chứ ko phải AM nha )
Xét tg AMC và tg DMB, có
MC = MB (gt)
AM = MD ( gt)
^AMC = ^BMD ( đđ )
=> tg AMC = tg DMB ( cgc)
=> AC = BD
c/ tg ABC cân tại A có AM là đường trung tuyến
=> AM cũng là đường cao
=> AD vuông góc BC (1)
Lại có AM = MD , BM = MC ( gt) (2)
Từ (1), (2) => ABCD là hình thoi
=> AB // CD
d/ Theo đề : AI // BC , AI = BC
=> ABCI là hình bình hành
=> AB // CI
Mà AB // BC ( cmt )
=> I , C ,D thẳng hàng
A B C D E K F
a, K;F là trung điểm của BD; BC (gt)
=> FK là đtb của tg BDC
=> FK // DC
mà DC // AB do ABCD là hình thang
=> FK//AB
b, K;E là trung điểm của BD; AD => KE là đtb của tg ABD
=> KE = 1/2 AB VÀ KE // AB
có AB = 4
=> ke = 2 cm
c, có KE // AB mà KF // AB
=> E;K;F thẳng hàng (tiên đề ơ clit)