Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình đấy của bài ngay trên. Mình đang vẽ lộn.
GT: AB // CD, AB < CD , I là trung điểm của AB, K là trung điểm của CD , \(\widehat{C}+\widehat{D}=90^0\)
Cần chứng minh \(IK=\frac{CD-AB}{2}\)
Vẽ AD cắt BC tại E.
\(\Delta ECD\)có: \(\widehat{C}+\widehat{D}=90^{^0}\Rightarrow\widehat{E}=90^0\)
Bạn tự chứng minh \(EI=\frac{1}{2}AB,EK=\frac{1}{2}CD\)
Ta có: \(\widehat{IEA}=\widehat{IAE},\widehat{KED}=\widehat{KDE},\widehat{IAE}=\widehat{KDE}\left(AB//CD\right)\)
\(\Rightarrow\widehat{IEA}=\widehat{KED}\)hay \(\widehat{IEA}=\widehat{KEA}\left(A\in ED\right)\)
Mà I và K nằm trên cùng 1 nửa mặt phẳng bờ chứa tia EA
Nên 3 điểm I, E, K thẳng hàng.
\(\Rightarrow IK=EK-EI=\frac{1}{2}CD-\frac{1}{2}AB=\frac{CD-AB}{2}\)
Chúc bạn học tốt.
Gọi tia đối tia OB là tia Ox và cắt AC lại K.
Ta có: góc BOC là góc ngoài ▲ KOC tại đỉnh O
→ góc BOC = góc ACO + góc OKC
MK : góc OKC là góc ngoài ▲ ABK
→ góc OKC = góc A + góc ABO
→ góc BOC = góc A + góc ABO + góc ACO
CHÚC BẠN HỌC TỐT !!!