Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABH\left(\widehat{AHB}=90^o\right)\) có:
\(AB^2=AH^2+BH^2\) ( theo định lí Py-ta-go)
\(15^2=AH^2+12^2\)
\(\Rightarrow AH^2=81\Rightarrow AH=9\left(cm\right)\)
Xét \(\Delta AHC\left(\widehat{AHC}=90^o\right)\) có:
\(AC^2=AH^2+HC^2\) (theo định lí Py-ta-go)
\(41^2=9^2+HC^2\)
\(\Rightarrow HC^2=1600\Rightarrow HC=40\left(cm\right)\)
Ta có:\(BC=CH+HB=40+12=52\left(cm\right)\)
\(\Rightarrow S_{ABC}=\frac{1}{2}AH.BC=\frac{1}{2}.9.52=234\left(cm^2\right)\)
Áp dụng Pitago có
\(AH^2=AB^2-HB^2\Leftrightarrow AH=\sqrt{15^2-12^2}=9\)
Lại có \(HC^2=AC^2-AH^2\Leftrightarrow HC=\sqrt{41^2-9^2}=40\)
Có BC=HB+HC=12+40=52
Có BC,AH tính S easy
Mk tìm các cạnh của tam giác ABC còn bạn tính chu vi hay diện tích thì mk ko biết nha
Áp dụng định lý Py-ta-gô vào tam giác vuông ABH tại H ta có:
\(AH^2+BH^2=AB^2\Rightarrow AH^2=AB^2-HB^2=15^2-12^2=81=9^2\Rightarrow AH=9\)
Tiếp tục áp dụng định lý Py-ta-gô vào tam giác vuông AHC ta có:
\(AH^2+HC^2=AC^2\Rightarrow HC^2=AC^2-AH^2=1600=40^2\Rightarrow HC=40\)
\(\Rightarrow BC=12+40=52\)
ok
a)Xét tam giác ABC và tam giá HBA, có:
Góc B chung
Góc BAC = góc BHA
--> Tam giác ABC ~ Tam giác HBA
a) xét tam giác ( k biết ghi kí hiệu trên này :v) ABC và tam giác HBA có
góc B chung ( kí hiệu góc nhé :D)
góc A = góc BHA = 90 độ ( gt) kí hiệu nhé
Nên tam giác ABC ~ tam giác HBA (g .g) mình ms làm dc câu A thôi :v
TỰ VẼ HÌNH NHA
a) xét tám giác ABC và tam giác HBA
góc A= góc H (=90 độ)
góc A :chung
=> tam giác ABC ~ tam giác HBA (g-g)
3:
\(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
HB=12^2/20=7,2cm
=>HC=20-7,2=12,8cm
\(AD=\dfrac{2\cdot12\cdot16}{12+16}\cdot cos45=\dfrac{48\sqrt{2}}{7}\)
\(HD=\sqrt{AD^2-AH^2}=\dfrac{48}{35}\left(cm\right)\)
a: Xet ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: ΔABC đồng dạng với ΔHAC
=>CA/CH=CB/CA
=>CA^2=CH*CB
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc ABC chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
b: Xét ΔCAB vuông tại A và ΔCHA vuông tại H có
góc ACB chung
Do đó: ΔCAB\(\sim\)ΔCHA
Suy ra: CA/CH=CB/CA
hay\(CA^2=CH\cdot CB\)
Áp dụng định lý Py – to – go ta có: