Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ TAM GIÁC ABC VUÔNG TẠI B , AD ĐL PYTAGO TA CÓ
\(AB^2+BC^2=AC^2\)
=>\(8^2+15^2=289=>AC^{ }=17\)
=>AC=17 CM
GiẢI:
VẼ DG vuông góc vối AH (G thuộc AH). Suy ra: DG//BC.
Ta có:
Góc BAH = góc BCA ( cùng phụ góc B)
Mà góc BCA = góc GDA (góc trong cùng phía)
Do đó: góc BAH = góc GDA
Xét hai tam giác ABH và DAG, ta có:
ü góc BAH = góc GDA (chứng minh trên)
ü AB=AD ( giả thuyết)
ü ABH vuông tại H, và AHG vuông tại G.
Nếu học tới các trường hợp bằng nhau của tam giác vuông thì ghi là:
Tam giác ABH = tam giác DAG (cạnh huyền góc nhon)
Nếu chưa học tới thì ghi:
Tam giác ABH = tam giác DAG (góc cạnh góc)
Suy ra: AH=DG
Lại có: DG=HE (vì EDGH là hình chủ nhật)
Vậy AH=HE
a: Xet ΔBAD và ΔBED có
BA=BE
góc ABD=góc EBD
BD chung
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: ΔBAD=ΔBED
=>góc BAD=góc BED=90 độ
=>DE vuông góc BC
AD=DE
DE<DC
=>AD<DC
d: góc HAE+góc BEA=90 độ
góc CAE+góc BAE=90 độ
=>góc HAE=góc CAE
=>AE là phân giác của góc HAC
a: Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AH=AK
AD chung
=>ΔAHD=ΔAKD
b: AK=AH
DH=DK
=>AD là trung trực của HK
a) Xét ΔAHD vuông tại H và ΔAKD vuông tại K có
AD chung
AH=AK(gt)
Do đó: ΔAHD=ΔAKD(Cạnh huyền-cạnh góc vuông)
Lời giải:
a) Xét tam giác $AHD$ và $AKD$ có:
$\widehat{AHD}=\widehat{AKD}=90^0$
$AD$ chung
$AH=AK$ (gt)
$\Rightarrow \triangle AHD=\triangle AKD$ (ch-cgv)
b)
Vì $\triangle AHD=\triangle AKD$ nên $DH=DK$
Mà $AH=AK$
Kết hợp 2 điều này lại suy ra $AD$ là trung trực của $HK$
Ta có đpcm.
a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
b: ta có: ΔBAD=ΔBHD
=>BA=BH và DA=DH
Ta có: BA=BH
=>B nằm trên đường trung trực của AH(1)
Ta có: DA=DH
=>D nằm trên đường trung trực của AH(2)
Từ (1),(2) suy ra BD là đường trung trực của AH
Ta có: DA=DH
DH<DC
Do đó: DA<DC
c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có
DA=DH
AK=HC
Do đó: ΔDAK=ΔDHC
=>\(\widehat{ADK}=\widehat{HDC}\)
mà \(\widehat{HDC}+\widehat{ADH}=180^0\)(hai góc kề bù)
nên \(\widehat{ADK}+\widehat{ADH}=180^0\)
=>K,D,H thẳng hàng
Ta có: BA+AK=BK
BH+HC=BC
mà BA=BH và AK=HC
nên BK=BC
=>B nằm trên đường trung trực của KC(3)
Ta có: ΔDAK=ΔDHC
=>DK=DC
=>D nằm trên đường trung trực của CK(4)
Từ (3),(4) suy ra BD là đường trung trực của CK
=>BD\(\perp\)CK
Xét tam giác vuông AHD và tam giác vuông AKD có:
+ A H = A K g t
+ A D c h u n g
Suy ra Δ A H D = Δ A K D c h − c g v nên A đúng
Từ đó ta có H D = D K ; H A D ^ = D A K ^ suy ra AD là tia phân giác của góc H A K nên C đúng
Ta có A H = A K g t và H D = D K c m t suy ra AD là đường trung trực của đoạn thẳng HK nên B đúng
Vậy A, B, C đều đúng
Chọn đáp án D
Chọn đáp án D