Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: AE+EB=AB
AM+MC=AC
mà AB=AC
và EB=MC
nên AE=AM
hay ΔAEM cân tại A
b: Xét ΔABM và ΔACE có
AB=AC
\(\widehat{BAM}\) chung
AM=AE
Do đó: ΔABM=ΔACE
Suy ra: \(\widehat{ABM}=\widehat{ACE}\)
c: XétΔABC có AE/AB=AM/AC
nên EM//BC
Ta có hình vẽ sau:
a) \(\widehat{AHB}\) = \(\widehat{DHB}\) = \(\frac{180^o}{2}\) = 90o (2 góc kề bù)
Xét ΔABH và ΔDBH có:
BH là cạnh chung
\(\widehat{AHB}\) = \(\widehat{DHB}\) = 90o (cm trên)
AH = DH (gt)
=> ΔABH = ΔDBH (c.g.c) (đpcm)
b) Vì ΔABH = ΔDBH (ý a)
=> \(\widehat{B_1}\) = \(\widehat{B_2}\) ( 2 góc tương ứng)
= BC là tia phân giác của \(\widehat{ABD}\) (đpcm)
c) Vì ΔABH = ΔDBH => AB = DB (2 cạnh tương ứng)
Xét ΔABC và ΔDBC có:
BC là cạnh chung
\(\widehat{B_1}\) = \(\widehat{B_2}\) (ý b)
AB = DB (cm tên)
=> ΔABC = ΔDBC(c.g.c)
=> \(\widehat{BAC}\) = \(\widehat{BDC}\) (2 góc tương ứng) (đpcm)
d) Vì ΔABH = ΔDBH (ý a)
=> AB = DB => \(\frac{1}{2}\)AB = \(\frac{1}{2}\)DB
=> NB = ND = \(\frac{1}{2}\)DB
=> N là trung điểm của BD(đpcm)
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HB chung
HA=HD
Do đó: ΔABH=ΔDBH
b: Ta có: ΔABH=ΔDBH
nên \(\widehat{ABH}=\widehat{DBH}\)
hay BC là tia phân giác của góc ABD
Ta có hình vẽ:
a/ Xét tam giác ABH và tam giác DBH có:
BH: cạnh chung
\(\widehat{AHB}\)=\(\widehat{DHB}\)=900 (GT)
AH = HD (GT)
Vậy tam giác ABH = tam giác DBH (c.g.c)
b/ Ta có: tam giác ABH = tam giác DBH (câu a)
=> \(\widehat{ABH}\)=\(\widehat{DBH}\)( 2 góc tương ứng)
=> \(\widehat{ABC}\)=\(\widehat{DBC}\)
=> BC là phân giác của góc ABD (đpcm)
c/ Xét tam giác ABC và tam giác DBC có:
BC: cạnh chung
\(\widehat{ABC}\)=\(\widehat{DBC}\) (đã chứng minh)
AB = DB (vì tam giác ABH = tam giác DBH)
=> tam giác ABC = tam giác DBC (c.g.c)
=>\(\widehat{BAC}\)=\(\widehat{BDC}\)(2 góc tương ứng)
d/ Ta có: AB = DB (vì tam giác ABH = tam giác DBH)
Mà BM = AM
=> BN = DN
\(\Rightarrow\) Vậy N là trung điểm BD (đpcm)
a: Xét ΔABH vuông tại H và ΔDBH vuông tại H có
HB chung
HA=HD
Do đó: ΔABH=ΔDBH
b: Ta có: ΔABH=ΔDBH
nên \(\widehat{ABH}=\widehat{DBH}\)
hay BC là tia phân giác của góc ABD
c: Xét ΔACD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔACD cân tại C
Xét ΔBAC và ΔBDC có
BA=BD
AC=DC
BC chung
DO đó: ΔBAC=ΔBDC
Suy ra: \(\widehat{BAC}=\widehat{BDC}\)
a. Xét ΔABD và ΔBCE có: ∠ ADB = ∠ AEC = 90º (gt)
BA = AC (gt)
∠BAC chung
⇒ ΔABD = ΔACE (cạnh huyền – góc nhọn)
b). ΔABD = ΔACE ⇒ ∠ABD = ∠ACE (hai góc tương ứng)
mặt khác: ∠ABC = ∠ACB (ΔABC cân tại A )
⇒ ∠ABC – ∠ABD = ∠ACB – ∠ACE => ∠HBC = ∠HCB
⇒ ΔBHC là tam giác cân
c. ΔHDC vuông tại D nên HD <HC
mà HB = HC (ΔAIB cân tại H)
=> HD < HB
d. Gọi I là giao điểm của BN và CM
Xét Δ BNH và Δ CMH có:
BH = CH (Δ BHC cân tại H)
∠ BHN = CHM(đối đỉnh)
NH = HM (gt)
=> Δ BNH = Δ CMH (c.g.c) ⇒ ∠HBN = ∠ HCM
Lại có: ∠ HBC = ∠ HCB (Chứng minh câu b)
⇒ ∠HBC + ∠HBN = ∠HCB + ∠HCM => ∠IBC = ∠ICB
⇒ IBC cân tại I ⇒ IB = IC (1)
Mặt khác ta có: AB = AC (Δ ABC cân tại A) (2)
HB = HC (Δ HBC cân tại H) (3)
Từ (1); (2) và (3) => 3 điểm I; A; H cùng nằm trên đường trung trực của BC
=> I; A; H thẳng hàng => các đường thẳng BN; AH; CM đồng quy