\(cot\alpha=\dfrac{a^2-b^2}{2ab}\). Trong đó \(\alpha\) l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 7 2021

\(cot^2a=\left(\dfrac{a^2-b^2}{2ab}\right)^2\Leftrightarrow\dfrac{cos^2a}{sin^2a}=\dfrac{a^4+b^4-2a^2b^2}{4a^2b^2}\)

\(\Leftrightarrow\dfrac{cos^2a}{sin^2a}+1=\dfrac{a^4+b^4-2a^2b^2}{4a^2b^2}+1\)

\(\Leftrightarrow\dfrac{1}{sin^2a}=\dfrac{a^4+b^4+2a^2b^2}{4a^2b^2}\)

\(\Leftrightarrow sin^2a=\dfrac{4a^2b^2}{a^4+b^4+2a^2b^2}\)

\(\Leftrightarrow cos^2a=1-sin^2a=1-\dfrac{4a^2b^2}{a^4+b^4+2a^2b^2}=\dfrac{a^4+b^4-2a^2b^2}{a^4+b^4+2a^2b^2}\)

\(\Leftrightarrow cos^2a=\left(\dfrac{a^2-b^2}{a^2+b^2}\right)^2\)

\(\Leftrightarrow cosa=\dfrac{a^2-b^2}{a^2+b^2}\)

NV
8 tháng 7 2021

Nhìn sự khác nhau giữa dòng 2 và dòng 3 và tự suy luận đi em, rất đơn giản đúng ko?

\(1+cot^2a=\dfrac{1}{sin^2a}\)

\(\Leftrightarrow\dfrac{1}{sin^2a}=1+\dfrac{\left(a^2-b^2\right)^2}{4a^2b^2}=\dfrac{4a^2b^2+a^4-2a^2b^2+b^4}{4a^2b^2}\)

\(\Leftrightarrow sin^2a=\dfrac{4a^2b^2}{a^4+2a^2b^2+b^4}=\left(\dfrac{2ab}{\left(a^2+b^2\right)}\right)^2\)

=>\(cos^2a=\dfrac{a^4+2a^2b^2+b^4-4a^2b^2}{\left(a^2+b^2\right)^2}\)

\(\Leftrightarrow cos^2a=\dfrac{\left(a^2-b^2\right)^2}{\left(a^2+b^2\right)^2}\)

hay \(cosa=\dfrac{\left(a^2-b^2\right)}{a^2+b^2}\)

27 tháng 6 2017

a.Ta có \(\tan\alpha.\cot\alpha=1\Rightarrow\tan\alpha=\frac{1}{\cot\alpha}\)

\(\Rightarrow\frac{1}{\cot\alpha}+\cot\alpha=2\Rightarrow\cot^2\alpha-2\cot\alpha+1=0\)

\(\cot\alpha=1\Rightarrow\alpha=45^0\)

b.Ta có \(\sin^2\alpha+\cos^2\alpha=1\Rightarrow\cos^2\alpha=1-\sin^2\alpha\)

\(\Rightarrow7.\sin^2\alpha+5\left(1-\sin^2\alpha\right)=\frac{13}{2}\)\(\Leftrightarrow\sin^2\alpha=\frac{3}{4}\Leftrightarrow\orbr{\begin{cases}sin\alpha=\frac{\sqrt{3}}{2}\\sin\alpha=\frac{-\sqrt{3}}{2}\end{cases}}\)

\(\Rightarrow\alpha=60^0\)

27 tháng 8 2021

a/ \(A=\frac{cot^2a-cos^2a}{cot^2a}-\frac{sina.cosa}{cota}\)

\(=\frac{\frac{cos^2a}{sin^2a}-cos^2a}{\frac{cos^2a}{sin^2a}}-\frac{sina.cosa}{\frac{cosa}{sina}}\)

\(=\left(1-sin^2a\right)-sin^2a=1\)

27 tháng 8 2021

b/ \(B=\left(cosa-sina\right)^2+\left(cosa+sina\right)^2+cos^4a-sin^4a-2cos^2a\)

\(=cos^2a-2cosa.sina+sin^2a+cos^2a+2cosa.sina+sin^2a+\left(cos^2a+sin^2a\right)\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2+\left(cos^2a-sin^2a\right)-2cos^2a\)

\(=2-sin^2a-cos^2a=2-1=1\)

AH
Akai Haruma
Giáo viên
23 tháng 9 2018

Lời giải:

a) Áp dụng công thức \(\sin ^2a+\cos ^2a=1\) thì:

\(P=3\sin ^2a+4\cos ^2a=3(\sin ^2a+\cos ^2a)+\cos ^2a\)

\(=3.1+(\frac{1}{3})^2=\frac{28}{9}\)

b)

\(\tan a=\frac{3}{4}\Rightarrow \cot a=\frac{1}{\tan a}=\frac{4}{3}\)

\(\frac{3}{4}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{3}{4}\cos a\)

\(\Rightarrow \sin ^2a=\frac{9}{16}\cos ^2a\)

\(\Rightarrow \sin ^2a+\cos ^2a=\frac{25}{16}\cos ^2a\Rightarrow \frac{25}{16}\cos ^2a=1\)

\(\Rightarrow \cos ^2a=\frac{16}{25}\Rightarrow \cos a=\pm \frac{4}{5}\)

Nếu \(\Rightarrow \sin a=\pm \frac{3}{5}\) (theo thứ tự)

c)

\(\frac{1}{2}=\tan a=\frac{\sin a}{\cos a}\Rightarrow \sin a=\frac{\cos a}{2}\). Vì a góc nhọn nên \(\cos a\neq 0\)

Do đó:

\(\frac{\cos a-\sin a}{\cos a+\sin a}=\frac{\cos a-\frac{\cos a}{2}}{\cos a+\frac{\cos a}{2}}=\frac{\cos a(1-\frac{1}{2})}{\cos a(1+\frac{1}{2})}=\frac{1-\frac{1}{2}}{1+\frac{1}{2}}=\frac{1}{3}\)

24 tháng 10 2017

2. \(\left(\sin a+\cos a\right)^2+\left(\sin a-\cos a\right)^2+2\)

\(=\sin^2a+2.\sin a.\cos a+\cos^2a+\sin^2a\cdot2.\sin a.\cos a+\cos^2a+2\)

\(=2\sin^2a+2\cos^2a+2\)

\(=2\left(\sin^2a+\cos^2a\right)+2\)

\(=2.1+2=4\)

=> biểu thức trên ko phụ thuộc vào a

24 tháng 10 2017

1. a.) \(\cot a=\dfrac{1}{\tan a}=\dfrac{1}{\sqrt{3}}\)

\(\tan\sqrt{3}=60\Rightarrow a=60^o\)

\(\sin60=\dfrac{\sqrt{3}}{2}\)

\(\cos60=\dfrac{1}{2}\)

b.) \(\cos^2a=1-\left(\dfrac{15}{17}\right)^2=\dfrac{64}{289}\Rightarrow\cos a=\dfrac{8}{17}\)

\(\tan a=\dfrac{\sin a}{\cos a}=\dfrac{\dfrac{15}{17}}{\dfrac{8}{17}}=\dfrac{15}{17}.\dfrac{17}{8}=\dfrac{15}{8}\)

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán

AH
Akai Haruma
Giáo viên
27 tháng 6 2018

Hỏi đáp Toán