K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 3 2019

\(P=\frac{sina+cosa}{sina-cosa}=\frac{\frac{sina}{sina}+\frac{cosa}{sina}}{\frac{sina}{sina}-\frac{cosa}{sina}}=\frac{1+cota}{1-cota}=\frac{1+2}{1-2}=-3\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có:

a) \(\sin \left( {\alpha  + \frac{\pi }{6}} \right) = \sin \alpha \cos \frac{\pi }{6} + \cos \alpha \sin \frac{\pi }{6} = \frac{{\sqrt 6 }}{3}.\frac{{\sqrt 3 }}{2} + \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{1}{2} = \frac{{ - \sqrt 3  + 3\sqrt 2 }}{6}\)      

b) \(\cos \left( {\alpha  + \frac{\pi }{6}} \right) = \cos \alpha .\cos \frac{\pi }{6} - \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} - \frac{{\sqrt 6 }}{3}.\frac{1}{2} =  - \frac{{3 + \sqrt 6 }}{6}\)

c) \(\sin \left( {\alpha  - \frac{\pi }{3}} \right) = \sin \alpha \cos \frac{\pi }{3} - \cos \alpha \sin \frac{\pi }{3} = \frac{{\sqrt 6 }}{3}.\frac{1}{2} - \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} = \frac{{3 + \sqrt 6 }}{6}\)

d) \(\cos \left( {\alpha  - \frac{\pi }{6}} \right) = \cos \alpha \cos \frac{\pi }{6} + \sin \alpha \sin \frac{\pi }{6} = \left( { - \frac{1}{{\sqrt 3 }}} \right).\frac{{\sqrt 3 }}{2} + \frac{{\sqrt 6 }}{3}.\frac{1}{2} = \frac{{ - 3 + \sqrt 6 }}{6}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,\sqrt{2}sin\left(\alpha+\dfrac{\pi}{4}\right)-cos\alpha\\ =\sqrt{2}\left(sin\alpha cos\dfrac{\pi}{4}+cos\alpha sin\dfrac{\pi}{4}\right)-cos\alpha\\ =\sqrt{2}\left(sin\alpha\cdot\dfrac{\sqrt{2}}{2}+cos\alpha\cdot\dfrac{\sqrt{2}}{2}\right)-cos\alpha\\ =\sqrt{2}\cdot sin\alpha\cdot\dfrac{\sqrt{2}}{2}+\sqrt{2}\cdot cos\alpha\cdot\dfrac{\sqrt{2}}{2}-cos\alpha\\ =sin\alpha+cos\alpha-cos\alpha\\ =sin\alpha\)

\(b,\left(cos\alpha+sin\alpha\right)^2-sin2\alpha\\ =cos^2\alpha+sin^2\alpha=2cos\alpha sin\alpha-2sin\alpha cos\alpha\\ =sin^2\alpha+cos^2\alpha\\ =1\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

a)    Ta có:

\(\begin{array}{l}{\sin ^4}\alpha  - {\cos ^4}\alpha  = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow \left( {{{\sin }^2}\alpha  + {{\cos }^2}\alpha } \right)\left( {{{\sin }^2}\alpha  - {{\cos }^2}\alpha } \right) = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow {\sin ^2}\alpha  - {\cos ^2}\alpha  - 1 + 2{\cos ^2}\alpha  = 0\\ \Leftrightarrow {\sin ^2}\alpha  + {\cos ^2}\alpha  - 1 = 0\\ \Leftrightarrow 1 - 1 = 0\\ \Leftrightarrow 0 = 0\end{array}\)

Đẳng thức luôn đúng

b)    Ta có:

\(\begin{array}{l}\tan \alpha  + \cot \alpha  = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{\sin \alpha }}{{\cos \alpha }} + \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{\cos \alpha .\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{1}{{\sin \alpha .\cos \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\end{array}\)

Đẳng thức luôn đúng

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có: \({\left( {\sin \alpha  + \cos \alpha } \right)^2} = {\sin ^2}\alpha  + 2\sin \alpha \cos \alpha  + {\cos ^2}\alpha  = 1 + \sin 2\alpha \;\)

b) \({\cos ^4}\alpha  - {\sin ^4}\alpha  = \left( {{{\cos }^2}\alpha  - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha  + {{\sin }^2}\alpha } \right) = \cos 2\alpha \;\)

12 tháng 9 2023

1) \(cot\alpha=\sqrt[]{5}\Rightarrow tan\alpha=\dfrac{1}{\sqrt[]{5}}\)

\(C=sin^2\alpha-sin\alpha.cos\alpha+cos^2\alpha\)

\(\Leftrightarrow C=\dfrac{1}{cos^2\alpha}\left(tan^2\alpha-tan\alpha+1\right)\)

\(\Leftrightarrow C=\left(1+tan^2\alpha\right)\left(tan^2\alpha-tan\alpha+1\right)\)

\(\Leftrightarrow C=\left(1+\dfrac{1}{5}\right)\left(\dfrac{1}{5}-\dfrac{1}{\sqrt[]{5}}+1\right)\)

\(\Leftrightarrow C=\dfrac{6}{5}\left(\dfrac{6}{5}-\dfrac{\sqrt[]{5}}{5}\right)=\dfrac{6}{25}\left(6-\sqrt[]{5}\right)\)

1: \(cota=\sqrt{5}\)

=>\(cosa=\sqrt{5}\cdot sina\)

\(1+cot^2a=\dfrac{1}{sin^2a}\)

=>\(\dfrac{1}{sin^2a}=1+5=6\)

=>\(sin^2a=\dfrac{1}{6}\)

\(C=sin^2a-sina\cdot\sqrt{5}\cdot sina+\left(\sqrt{5}\cdot sina\right)^2\)

\(=sin^2a\left(1-\sqrt{5}+5\right)=\dfrac{1}{6}\cdot\left(6-\sqrt{5}\right)\)

2: tan a=3

=>sin a=3*cosa 

\(1+tan^2a=\dfrac{1}{cos^2a}\)

=>\(\dfrac{1}{cos^2a}=1+9=10\)
=>\(cos^2a=\dfrac{1}{10}\)

\(B=\dfrac{3\cdot cosa-cosa}{27\cdot cos^3a+3\cdot cos^3a+2\cdot3\cdot cosa}\)

\(=\dfrac{2\cdot cosa}{30cos^3a+6cosa}=\dfrac{2}{30cos^2a+6}\)

\(=\dfrac{2}{3+6}=\dfrac{2}{9}\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)

Ta có:

\({\cos ^4}\alpha {\sin ^4}\alpha  = \left( {{{\cos }^2}\alpha  - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha  + {{\sin }^2}\alpha } \right) \\= {\cos ^2}\alpha  - {\sin ^2}\alpha = {\cos ^2}\alpha  - (1 - {\cos ^2}\alpha ) \\= {\cos ^2}\alpha  - 1 + {\cos ^2}\alpha  = 2{\cos ^2}\alpha  - 1\)

(đpcm)

b)

Ta có:

\(\frac{{{{\cos }^2}\alpha  + {{\tan }^2}\alpha  - 1}}{{{{\sin }^2}\alpha }} = \frac{{{{\cos }^2}\alpha \; + {{\tan }^2}\alpha  - {{\sin }^2}\alpha  - {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{{{{\tan }^2}\alpha  - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{1}{{{{\cos }^2}\alpha }} - 1 = {\tan ^2}\alpha \)

(đpcm)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a)     \({\cos ^2}\alpha  + {\sin ^2}\alpha  = 1\)

b)     \(\tan \alpha .\cot \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\)

c)     \(\frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = {\tan ^2}\alpha  + 1\)

d)     \(\frac{1}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = 1 + {\cot ^2}\alpha \)

HQ
Hà Quang Minh
Giáo viên
25 tháng 8 2023

\(a,\dfrac{1}{tan\alpha+1}+\dfrac{1}{cot\alpha+1}\\ =\dfrac{cot\alpha+1+tan\alpha+1}{\left(tan\alpha+1\right)\left(cot\alpha+1\right)}\\ =\dfrac{tan\alpha+cot\alpha+2}{tan\alpha\cdot cot\alpha+tan\alpha+cot\alpha+1}\\ =\dfrac{tan\alpha+cot\alpha+2}{tan\alpha+cot\alpha+2}\\ =1\)

\(b,cos\left(\dfrac{\pi}{2}-\alpha\right)-sin\left(\pi+\alpha\right)\\ =sin\alpha+sin\alpha\\ =2sin\alpha\)

\(c,sin\left(\alpha-\dfrac{\pi}{2}\right)+cos\left(-\alpha+6\pi\right)-tan\left(\alpha+\pi\right)cot\left(3\pi-\alpha\right)\\ =-sin\left(\dfrac{\pi}{2}-\alpha\right)+cos\left(\alpha\right)-tan\left(\alpha\right)cot\left(\pi-\alpha\right)\\ =-cos\left(\alpha\right)+cos\left(\alpha\right)+tan\left(\alpha\right)\cdot cot\left(\alpha\right)\\ =1\)

QT
Quoc Tran Anh Le
Giáo viên
21 tháng 9 2023

Ta có:

 \(\begin{array}{l}\sin \left( { - \frac{{15\pi }}{2} - \alpha } \right) - \cos \left( {13\pi  + \alpha } \right) =  \sin \left( { -\frac{{16\pi }}{2} +\frac{{\pi }}{2}  + \alpha } \right) - \cos \left( {12\pi  + \pi + \alpha } \right) =  \sin \left( {-8\pi  + \frac{\pi }{2} - \alpha } \right) - \cos \left( { \pi + \alpha } \right) \\ = \sin \left( {\frac{\pi }{2} - \alpha } \right) + \cos \left( \alpha  \right) = \cos \left( \alpha  \right) + \cos \left( \alpha  \right) = 2\cos \left( \alpha  \right) = 2.\left( { - \frac{5}{{13}}} \right) = \frac{{ - 10}}{{13}}\end{array}\)