Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{3\cdot1}\)
\(\Leftrightarrow2A=\dfrac{2}{99\cdot97}-\dfrac{2}{97\cdot95}-...-\dfrac{2}{3\cdot1}\)
\(=-\dfrac{1}{99}+\dfrac{1}{97}-\dfrac{1}{97}+\dfrac{1}{95}-...-\dfrac{1}{3}+1\)
\(=-\dfrac{1}{99}+1=\dfrac{98}{99}\)
\(\Rightarrow A=\dfrac{49}{99}\)
\(A=\dfrac{1}{99.97}-\dfrac{1}{97.95}-...-\dfrac{1}{5.3}-\dfrac{1}{3.1}\)
\(=\dfrac{1}{99.97}-\left(\dfrac{1}{97.95}+...+\dfrac{1}{5.3}+\dfrac{1}{3.1}\right)\)
Đặt \(B=\dfrac{1}{97.95}+...+\dfrac{1}{5.3}+\dfrac{1}{3.1}\)
\(B=\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{95.97}\)
\(2B=\dfrac{2}{1.3}+\dfrac{2}{3.5}+...+\dfrac{2}{95.97}\)
\(2B=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+....+\dfrac{1}{95}-\dfrac{1}{97}\)
\(2B=1-\dfrac{1}{97}\)
\(2B=\dfrac{96}{97}\)
\(B=\dfrac{96}{97}:2=\dfrac{48}{97}\)
\(\Rightarrow A=\dfrac{1}{99.97}-B=\dfrac{1}{9603}-\dfrac{48}{97}=\dfrac{-4751}{9603}\)
`1/15+1/35+1/63+1/99+1/143`
`=1/[3.5]+1/[5.7]+1/[7.9]+1/[9.11]+1/[11.13]`
`=1/2(2/[3.5]+2/[5.7]+2/[7.9]+2/[9.11]+2/[11.13])`
`=1/2.(1/3-1/5+1/5-1/7+...+1/11-1/13)`
`=1/2.(1/3-1/13)`
`=1/2 . 10/39`
`=5/39`
A= 1/3 + 1/3^2 + ... + 1/3^8
3A= 3. (1/3+ 1/3^2+ ... + 1/3^8)
3A=1+ 1/3 + 1/3^2+ ... +1/3^7
=> 3A - A= (1 + 1/3 + 1/3^2 + ... + 1/3^7) - (1/3 + 1/3^2+ ... + 1/3^8)
=> 2A= 1 - 1/ 3^8
2A= 6560/6561
A= 6560/6561 : 2
A= 3280/6561
\(\dfrac{-1}{4}< \dfrac{x}{24}< \dfrac{-1}{6}\\ \dfrac{-6}{24}< \dfrac{x}{24}< \dfrac{-4}{24}\\ \Rightarrow x=-5\)
\(\dfrac{-1}{9}.\dfrac{-3}{5}+\dfrac{5}{-6}.\dfrac{-3}{5}-\dfrac{7}{2}.\dfrac{3}{5}\)
\(=\dfrac{3}{5}.\left(\dfrac{1}{9}+\dfrac{5}{6}-\dfrac{7}{2}\right)\)
\(=\dfrac{3}{5}.\left(\dfrac{2}{18}+\dfrac{15}{18}-\dfrac{63}{18}\right)\)
\(=\dfrac{3}{5}.\left(-\dfrac{23}{9}\right)\)
\(=-\dfrac{69}{45}\)
`5/9+4/9:x=1/3`
`=>4/9:x=1/3-5/9`
`=>4/9:x=3/9-5/9`
`=>4/9:x=-2/9`
`=>x=4/9:(-2/9)`
`=>x=4/9.(-9/2)`
`=>x=-4/2`
`=>x=-2`
Theo đề, ta có: \(\dfrac{1+2x}{18}=\dfrac{1+4x}{34}\)
\(\Leftrightarrow34\left(1+2x\right)=18\left(1+4x\right)\)
\(\Leftrightarrow34+68x=18+72x\)
\(\Leftrightarrow34-18=72x-68x\)
\(\Leftrightarrow16=4x\)
\(\Leftrightarrow x=4\)
Khi \(x=4\) vào ta có: \(\dfrac{1+4.4}{34}=\dfrac{1+6.4}{2y^2}\Leftrightarrow\dfrac{1}{2}=\dfrac{25}{2y^2}\)
\(\Leftrightarrow2y^2=50\)
\(\Leftrightarrow y^2=50\)
\(\Leftrightarrow y=\pm5\)
\(C=\dfrac{1}{99\cdot97}-\dfrac{1}{97\cdot95}-...-\dfrac{1}{5\cdot3}-\dfrac{1}{3\cdot1}\)
\(=\dfrac{1}{99\cdot97}-\left(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{95\cdot97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{95\cdot97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{95}-\dfrac{1}{97}\right)\)
\(=\dfrac{1}{97\cdot99}-\dfrac{1}{2}\left(1-\dfrac{1}{97}\right)=\dfrac{1}{97\cdot99}-\dfrac{48}{97}\)
\(=\dfrac{1-48\cdot99}{97\cdot99}=\dfrac{-4751}{9603}\)