\(^{x+y+z=1,x^3+y^3+z^3=1}\).tính A=\(x^{20...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 10 2016

Ta có :

\(\left(x+y+z\right)^3=1^3=1\)

Có : \(\left(x+y+z\right)^3-x^3-y^3-z^3=1-1\)

\(\Rightarrow\left[\left(x+y+z\right)-x\right]\left[\left(x+y+z\right)^2+x^2+x\left(x+y+z\right)\right]-\left(y+z\right)\left(y^2+z^2-yz\right)=0\)

\(\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz\right]-\left(y+z\right)\left(y^2+z^2-yz\right)=0\)

\(\Rightarrow\left(y+z\right)\left[x^2+y^2+z^2+2\left(xy+yz+xz\right)+x^2+x^2+xy+yz+xz-y^2-z^2+yz\right]=0\)

\(\Rightarrow\left(y+z\right)\left[3x^2+3xy+3yz+3xz\right]=0\)

\(\Rightarrow3\left(y+z\right)\left(x+z\right)\left(x+y\right)=0\)

\(\Rightarrow\)y+z=0 hoặc x+z=0 hoặc x+y=0

Có : \(A=x^{2015}+y^{2015}+z^{2015}\)

\(=x^{2015}+\left(y+z\right)\left(y^{2014}-y^{2013}z+...+z^{2014}\right)\)

\(=y^{2015}+\left(x+z\right)\left(x^{2014}-x^{2013}z+...+z^{2014}\right)\)

\(=z^{2015}+\left(x+y\right)\left(x^{2014}-x^{2013}y+...+y^{2014}\right)\)

Với \(x+y=0\Rightarrow z=1\Rightarrow A=1+0=1\)

Tương tự với \(y+z=0;z+x=0\)đều có A=1
Vậy ...

 

31 tháng 10 2016

Kinh quá hoa hết cả mắt. 

NM
8 tháng 1 2021

áp dụng bất đẳng thức cauchy cho 2015 số , ta có

\(2x^{2015}+2013=x^{2015}+x^{2015}+1+1+..+1\ge2015\sqrt[2015]{x^{2015}.x^{2015}}=2015x^2\)

tương tự ta có

\(\hept{\begin{cases}2.y^{2015}+2013\ge2015y^2\\2.z^{2015}+2013\ge2015z^2\end{cases}}\)

cộng ba bất đẳng thức lại ta có \(2\left(x^{2015}+y^{2015}+z^{2015}\right)+2013.3\ge2015\left(x^2+y^2+z^2\right)\)

hay \(2015\left(x^2+y^2+z^2\right)\le2.3+2013.3=2015.3\Rightarrow\left(x^2+y^2+z^2\right)\le3\)

dấu "=" xảy ra khi x=y=z=1

9 tháng 2 2019

x + y + z = x3 + y3 + z3 = 1

\(\Rightarrow\)( x + y + z )3 = x3 + y3 + z3 = 1

\(\Rightarrow\)( x + y )3 + z3 + 3 ( x + y ) z ( x + y + z ) = x3 + y3 + z3 = 1

\(\Rightarrow\)x3 + y3 + z3 + 3 ( x + y ) ( y + z ) ( x + z ) =  x3 + y3 + z3 = 1

\(\Rightarrow\)3 ( x + y ) ( y + z ) ( x + z ) = 0

giả sử x + y = 0 \(\Rightarrow\)z = 1

Ta có : x2015 + y2015 + z2015 = ( x + y ) . A + z2015 = 1

3 tháng 4 2019

Có x2015 + y2015 + z2015 = 3

Điều này xảy ra khi và chỉ khi x = y = z = 1

=> max của x2 + y2 + z2  = 3

Vậy...

7 tháng 11 2018

Câu hỏi của Minh Triều - Toán lớp 8 - Học toán với OnlineMath 

Em xem bài làm tương tự ở link này nhé!!! Chú ý thay kết quả khác nhé!

7 tháng 11 2018

Ban lm giúp mk ik mình không hiểu lắm
Cảm ơn ạ 

7 tháng 10 2020

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz-xyz=0\)

\(\Leftrightarrow\left(x^2y+xy^2\right)+\left(yz^2+z^2x\right)+\left(zx^2+2xyz+y^2z\right)=0\)

\(\Leftrightarrow xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy+z^2+yz+zx\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x = -y hoặc y = -z hoặc z = -x

Không mất tổng quát giả sử x = -y, khi đó:

\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=-\frac{1}{y^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{z^{2015}}\)

\(\frac{1}{x^{2015}+y^{2015}+z^{2015}}=\frac{1}{-y^{2015}+y^{2015}+z^{2015}}=\frac{1}{z^{2015}}\)

\(\Rightarrow\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)