Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{y+z+x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\\y=z\\z=x\end{matrix}\right.\)
Do đó \(\left\{{}\begin{matrix}x-y=0\\y-z=0\\z-x=0\end{matrix}\right.\)
Thay vào biểu thức \(P=\left(x-y\right)^{2022}+\left(y-z\right)^{2023}+\left(x-z-1\right)^{202}\),ta có:
\(P=0^{2022}+0^{2023}+\left(-1\right)^{202}\)
\(=0+0+1\)
\(=1\)
(Nó có hơi dài dòng)
Cho 3 số x,y,z thỏa mãn: x/2020=y/2021=z/2022.Chứng minh rằng: (x-z)^3 =
(x-z)^3= (2020 - 2022)^3 = -8
8(x-y)^2.(y-z)= 8(2020 - 2021)^2 . (2021 - 2022) = -8.
Vì (x-z)^3 = -8
8(x-y)^2.(y-z) = -8
==> (x-z)^3 = 8(x-y)^2.(y-z)
Bạn tham khảo tại đây:
https://hoc24.vn/cau-hoi/cho-xyz-khac-0-thoa-man-2-xy-3yz4zx-tinh-p-dfracxydfracyzdfraczx.3861996653762
Lời giải:
Áp dụng TCDTSBN:
$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1$
$\Rightarrow x=y; y=z; z=x\Rightarrow x=y=z$
Khi đó:
$|x+y|=|z-1|$
$\Leftrightarrow |2x|=|x-1|$
$\Rightarrow 2x=x-1$ hoặc $2x=-(x-1)$
$\Rightarrow x=-1$ hoặc $x=\frac{1}{3}$ (đều thỏa mãn)
Vậy $(x,y,z)=(-1,-1,-1)$ hoặc $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$
Lời giải:
** Bổ sung điều kiện $x,y,z$ là các số phân biê.
$x^2(y+z)=y^2(x+z)$
$\Leftrightarrow x^2y+x^2z-y^2x-y^2z=0$
$\Leftrightarrow (x^2y-xy^2)+(x^2z-y^2z)=0$
$\Leftrightarrow xy(x-y)+z(x-y)(x+y)=0$
$\Leftrightarrow (x-y)(xy+yz+xz)=0$
$\Rightarrow x-y=0$ hoặc $xy+yz+xz=0$
Mà $x\neq y$ nên $xy+yz+xz=0$
Khi đó: $2015=x^2(y+z)=x(xy+xz)=x(-yz)=-xyz$
$A=z^2(x+y)=z(zx+zy)=z(-xy)=-xyz=2015$
ÁP dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{x}{y}=\dfrac{y}{z}=\dfrac{z}{x}=\dfrac{x+y+z}{x+y+z}=1\)
\(\Rightarrow\left\{{}\begin{matrix}z=y\\y=z\\x=z\end{matrix}\right.\)\(\Rightarrow x=y=z=\dfrac{2022}{3}=674\)
\(\Rightarrow\left(x,y,x\right)=674\)