Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình nhầm xíu :
Tính giá trị của biểu thức :
P = x2015 + y2015 + z2015
Ta có : x3 + y3 = z(3xy - z2)
=> x3 + y3 = 3xyz - z3
=> x3 + y3 + z3 - 3xyz = 0
=> (x + y)(x2 - xy + y2) + z3 - 3xyz = 0
=> (x + y)3 - 3xy(x + y) + z3 - 3xyz = 0
=> [(x + y)3 + z3] - 3xy(x + y) - 3xyz = 0
=> (x + y + z)[(x + y)2 - (x + y)z + z2] - 3xy(x + y + z) = 0
=> (x + y +z)(x2 + y 2 + 2xy - xz - yz + z2) - 3xy(x + y + z) = 0
=> (x + y + z)(x2 + y2 + z2 - xy - yz - zx) = 0
=> x2 + y2 + z2 - xy - yz - zx = 0 (Vì x + y + z = 3)
=> 2(x2 + y2 + z2 - xy - yz - zx) = 0
=> 2x2 + 2y2 + 2z2 - 2xy - 2yz - 2zx = 0
=> (x2 - 2xy + y2) + (y2 - 2yz + z2) + (x2 - 2zx + z2) = 0
=> (x - y)2 + (y - z)2 + (x - z)2 = 0
=> \(\hept{\begin{cases}x-y=0\\y-z=0\\x-z=0\end{cases}}\Rightarrow x=y=z\)
mà x + y + z = 3
=> x = y = z = 1
Khi đó A = 673(x2019 + y2019 + z2019) + 1
= 673(12019 + 12019 + 12019) + 1
= 673.3 + 1 = 2020
Vậy A = 2020
Ta có : \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}\)
Suy ra \(\dfrac{x}{2013}=\dfrac{y}{2014}=\dfrac{z}{2015}=\dfrac{x-y}{2013-2014}=\dfrac{x-y}{-1}\)
Lời giải:
** Bổ sung điều kiện $x,y,z$ là các số phân biê.
$x^2(y+z)=y^2(x+z)$
$\Leftrightarrow x^2y+x^2z-y^2x-y^2z=0$
$\Leftrightarrow (x^2y-xy^2)+(x^2z-y^2z)=0$
$\Leftrightarrow xy(x-y)+z(x-y)(x+y)=0$
$\Leftrightarrow (x-y)(xy+yz+xz)=0$
$\Rightarrow x-y=0$ hoặc $xy+yz+xz=0$
Mà $x\neq y$ nên $xy+yz+xz=0$
Khi đó: $2015=x^2(y+z)=x(xy+xz)=x(-yz)=-xyz$
$A=z^2(x+y)=z(zx+zy)=z(-xy)=-xyz=2015$