\(_1\); \(x_2;x_3\) thõa mãn :
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x_1-1}{3}=\frac{x_2-2}{2}=\frac{x_3-3}{1}=\frac{\left(x_1-1\right)+\left(x_2-2\right)+\left(x_3-3\right)}{3+2+1}=\frac{\left(x_1+x_2+x_3\right)-6}{6}=\frac{30-6}{6}=\frac{24}{6}=4\)

=> \(\frac{x_1-1}{3}=4\Rightarrow x_1=13\)

     \(\frac{x_2-2}{2}=4\Rightarrow x_2=10\)

     \(\frac{x_3-3}{1}=4\Rightarrow x_3=7\)

=> \(x_1.x_2-x_2.x_3=13.10-10.7=10\left(13-7\right)=10.6=60\)

Vậy   \(x_1.x_2-x_2.x_3=60\)

22 tháng 2 2020

 720 : ( x . 2 + x . 3 ) = 3.2
720 : ( x . 2 + x.3 ) = 6
( x .2 + x.3 )           = 720 : 6 
x.2+x.3 = 120
x . ( 2 + 3 ) = 120
x . 5 = 120
     x     = 120 : 5 
    x      = 24

10 tháng 9 2017

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

ngu như con bò tót, ko biết 1+1=2.

24 tháng 1 2017

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x_1-1}{9}=\frac{x_2-2}{8}=\frac{x_3-3}{7}=...=\frac{x_9-9}{1}=\frac{x_1-1+x_2-2+...+x_9-9}{9+8+7+...+1}\)\(=\frac{\left(x_1+x_2+...+x_9\right)-45}{45}=\frac{90-45}{45}=\frac{45}{45}=1\)

Từ \(\frac{x_1-1}{9}=1\Rightarrow x_1=1\cdot9+1=10\)

Vậy \(x_1=10\)

24 tháng 8 2017

dễ thôi

Cho đường tròn (O;R) đường kính AB,dây CD vuông góc với AB tại H,đường thẳng d tiếp xúc với đường tròn tại A,CO DO cắt đường thẳng d lần lượt tại M N,CM DN cắt đường tròn (O) lần lượt tại E F,Chứng minh tứ giác MNEF nội tiếp,Chứng minh ME.MC = NF.ND,Tìm vị trí của H để tứ giác AEOF là hình thoi,Toán học Lớp 9,bài tập Toán học Lớp 9,giải bài tập Toán học Lớp 9,Toán học,Lớp 9

24 tháng 8 2017

Rảnh hả bạn :3

7 tháng 11 2015

bai mjh lam la the so ko fai cai nay nhg cu lm

19 tháng 10 2018

Theo bài ra ta có : \(\dfrac{x1-1}{9}=\dfrac{x2-2}{8}=\dfrac{x3-3}{7}=......=\dfrac{x9-9}{1}\)

= \(\dfrac{\left(x1-1\right)+\left(x2-2\right)+\left(x3-3\right)+....+\left(x9-9\right)}{9+8+7+....+2+1}\)

=\(\dfrac{\left(x1+x2+x3+....+x9\right)-\left(1+2+3+...+9\right)}{9+8+7+...+1}\)

= \(\dfrac{90-45}{45}=\dfrac{45}{45}=1\)

=> \(x1=9.1+1=10\)

\(x2=8.1+2=10\)

\(x3=7.1+3=10\)

\(x4=6.1+4=10\)

\(x5=5.1+5=10\)

\(x6=4.1+6=10\)

\(x7=3.1+7=10\)

\(x8=2.1+8=10\)

\(x9=1.1+9=10\)

Vậy \(x1,x2,x3,x4,x5,...,x9\) tất cả đều bằng 10